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Highlights	10	

l A	dispersion	prediction	method	based	on	artificial	neural	network	is	proposed.	11	
l The	method	uses	particle	swarm	optimization	and	expectation	maximization	to	estimate	the	12	

dispersion	source.	13	
l The	method	has	high	accuracy	in	dispersion	prediction	and	source	estimation.	14	
l The	method	is	verified	by	a	field	study.	15	

Abstract	16	

Hazardous	gas	leak	accident	has	posed	a	potential	threat	to	human	beings.	Predicting	atmospheric	17	
dispersion	and	estimating	its	source	become	increasingly	important	in	emergency	management.	18	
Current	 dispersion	prediction	 and	 source	 estimation	models	 cannot	 satisfy	 the	 requirement	 of	19	
emergency	management	because	they	are	not	equipped	with	high	efficiency	and	accuracy	at	the	20	
same	 time.	 In	 this	 paper,	 we	 develop	 a	 fast	 and	 accurate	 dispersion	 prediction	 and	 source	21	
estimation	method	based	on	artificial	neural	network	(ANN),	particle	swarm	optimization	(PSO)	22	
and	expectation	maximization	 (EM).	The	novel	method	uses	a	 large	amount	of	pre-determined	23	
scenarios	to	train	the	ANN	for	dispersion	prediction,	so	that	the	ANN	can	predict	concentration	24	
distribution	 accurately	 and	 efficiently.	 PSO	 and	 EM	 are	 applied	 for	 estimating	 the	 source	25	
parameters,	which	can	effectively	accelerate	the	process	of	convergence.	The	method	is	verified	by	26	
the	Indianapolis	field	study	with	a	SF6	release	source.	The	results	demonstrate	the	effectiveness	of	27	
the	method.	28	

Keywords:	 atmospheric	 dispersion;	 source	 estimation;	 neural	 network;	 particle	 swarm	29	
optimization	(PSO);	expectation	maximization	(EM).	30	

1	Introduction	31	

Hazardous	 gas	 leakage	 accident	 has	 brought	 huge	 damage	 to	 the	 society.	 For	 example,	 Bhopal	32	
accident	caused	thousands	of	deaths	due	to	the	methyl	isocyanate	gas	leak	accident	(Varma	and	33	
Guest,	1993).	Consequently,	it	is	of	paramount	importance	to	monitor	industrial	emission	and	use	34	
the	monitoring	data	to	estimate	the	release	rate	and	location	of	emission	source.	To	estimate	the	35	



2	

	

emission	source,	an	atmospheric	dispersion	simulation	(ADS)	model	and	a	parameter	estimation	36	
algorithm	with	high	accuracy	and	efficiency	are	necessary.	The	ADS	model	is	used	for	predicting	37	
the	 concentration	 distribution,	and	 the	 parameter	 estimation	algorithm	 is	 used	 for	 finding	 the	38	
optimal	 source	 parameters	 to	 make	 ADS	 model	 output	 as	 close	 as	 possible	 to	 the	 actual	39	
measurement.	40	

Many	ADS	modeling	methods	have	been	developed	by	researchers.	Gaussian	model	is	a	typical	and	41	
fast	 tool	 for	 atmospheric	 dispersion	 prediction,	whose	 expression	 is	 quite	 simple.	 Usually,	 the	42	
Gaussian	 dispersion	 model	 is	 suitable	 for	 emergency	 management	 due	 to	 its	 high	 efficiency.	43	
However,	its	mechanism	is	too	simple	to	give	the	accurate	prediction,	whose	limitations	are:	it	only	44	
supports	 low	 wind	 speed;	 it	 only	 supports	 straight-line	 trajectories;	 it	 assumes	 steady-state	45	
atmosphere;	it	has	no	memory	of	previous	emissions.	The	Lagrangian	model	is	very	common	in	46	
meteorological	modeling	tools	based	on	random	walk	theory	(Draxler	and	Rolph,	2012;	Stein	et	al.,	47	
2015;	Wilson	and	Sawford,	1996).	It	can	simulate	the	atmospheric	dispersion	process	in	relatively	48	
complex	meteorological	 conditions	and	global	 scale.	 This	model	 is	more	 suitable	 in	 large-scale	49	
scenarios,	but	the	investigation	area	of	hazardous	gas	leakage	accident	generally	cannot	reach	that	50	
scale.	 Integrated	 model	 combines	 different	 dispersion	 model	 together,	 which	 is	 popular	 in	51	
commercial	 software	 for	 risk	analysis	 such	as	PHAST	(Connan	et	al.,	2013;	Hanna	et	al.,	2008).	52	
However,	the	integrated	models	also	need	few	minutes	to	calculate	and	the	result	 is	not	always	53	
accurate.	In	complex	environments,	CFD	model	is	currently	the	optimal	option	to	obtain	accurate	54	
prediction	results	(Hanna	et	al.,	2009;	Mazzoldi	et	al.,	2008;	Pontiggia	et	al.,	2009).	However,	the	55	
CFD	model	needs	long	computation	time,	usually	measured	in	hours	or	even	days,	which	restricts	56	
the	 application	 of	 CFD	 in	 emergency	management.	 Furthermore,	 a	 common	 problem	 of	 these	57	
methods	 is	 that	 some	 input	 parameters	 are	 quite	 difficult	 to	measure	 and	quantify.	 Therefore,	58	
researchers	proposed	the	methods	that	can	use	pre-determined	scenarios	to	train	ANN	for	decision	59	
and	 bypass	 some	 troubling	 parameters	 (Krasnopolsky	 and	 Schiller,	 2003;	 So	 et	 al.,	 2010).	 A	60	
previous	 study	 also	 used	 the	 integration	 of	 machine	 learning	 algorithms	 and	 traditional	 ADS	61	
models	to	predict	the	contaminant	dispersion(Ma	and	Zhang,	2016).	The	high	accuracy	of	these	62	
studies	represents	that	the	ANN	could	be	a	useful	tool	for	pollution	forecasting	and	risk	analysis.	63	

In	terms	of	source	parameters	estimation,	parameters	could	be	determined	by	estimating	their	64	
posterior	distribution	or	finding	the	maximum	likelihood	estimate.	Thus,	most	source	estimation	65	
methods	are	based	on	Bayesian	inference	or	optimization	algorithms	(Hutchinson	et	al.,	2017).	66	
Markov	Chain	Monte	Carlo	(MCMC)	algorithm	is	usually	used	for	posterior	distribution	estimation	67	
in	source	estimation	problem	(Borysiewicz	et	al.,	2012;	Keats	et	al.,	2007;	Tierney,	1994;	Yee,	2007).	68	
Some	filtering	methods	also	apply	the	Bayesian	theory	to	update	the	source	parameters	(Huber,	69	
2014;	Wawrzynczak	 et	 al.,	 2014;	 Zhang	 and	Wang,	 2013).	 Optimization	 algorithms	 are	widely	70	
implemented	to	find	the	solution	of	minimum	cost	or	maximum	likelihood,	whose	theoretical	basis	71	
is	maximum	likelihood	estimation	(MLE)	principle	(Qiu	et	al.,	2016;	Sharan	et	al.,	2009).	Intelligent	72	
optimization	methods	are	usually	used,	such	as	particle	swarm	optimization	(PSO)	(Eberhart	and	73	
Kennedy,	1995;	Qiu	et	al.,	2016),	simulated	annealing	(Thomson	et	al.,	2007)	and	genetic	algorithm	74	
(Allen	et	al.,	2007).	In	dispersion	source	estimation	problem,	the	release	rate	and	location	of	source	75	
should	be	estimated.	When	the	source	location	is	known,	these	methods	could	be	quite	effective	76	
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because	we	only	have	to	estimate	one	parameter	(release	rate)	(Chai	et	al.,	2015;	Eslinger	et	al.,	77	
2014;	Katata	et	al.,	2015).	However,	if	the	source	location	is	unknown,	the	problem	becomes	more	78	
complicated	because	the	algorithm	may	be	difficult	to	converge.	Even	if	the	algorithm	can	converge	79	
successfully,	estimating	all	these	parameters	together	is	a	quite	time-consuming	task	due	to	the	80	
huge	search	space.	Therefore,	expectation	maximization	(EM)	algorithm	is	introduced	to	address	81	
this	 problem	 (Do	and	Batzoglou,	 2008).	 In	 the	E-step,	 the	expected	 value	 of	 source	 location	 is	82	
estimated	using	ANN	and	PSO,	while	in	the	M-step,	the	estimated	release	rate	is	updated	on	the	83	
basis	of	MLE.	84	

In	 this	 paper,	 the	 proposed	method	 is	 able	 to	 estimate	 the	 emission	 source	 using	 ANN-based	85	
dispersion	prediction	and	PSO-EM-based	parameter	estimation.	To	verify	the	proposed	method,	86	
SF6	dispersion	data	 from	 Indianapolis	 field	study	 is	applied	 to	validate	whether	 the	method	 is	87	
feasible	in	practice.	88	

2	Methods	89	

2.1	Workflow	90	

In	order	to	predict	the	concentration	distribution	and	estimate	the	dispersion	source,	the	workflow	91	
of	the	proposed	method	includes	several	steps:	92	

A. Obtaining	a	large	number	of	release	scenarios	covering	nearly	all	possibilities	from	gas	trace	93	
experiment.	If	it	is	difficult	to	control	the	variables	of	field	experiment,	release	scenarios	can	94	
also	be	obtained	from	simulation	experiment.	95	

B. Extracting	input	and	target	dataset	from	release	scenarios.	To	predict	the	concentration	of	the	96	
interest	 point,	 the	 input	 data	 should	 contain	 the	 information	 including	 source	 term,	97	
meteorological	parameters	and	the	location	of	interest	point.	The	target	data	should	be	able	98	
to	present	the	value	or	level	of	gas	concentration	of	the	interest	point.	99	

C. Training	and	testing	of	the	ANN.	The	input	and	target	dataset	extracted	from	release	scenarios	100	
in	step	B	is	used	for	ANN	training	and	testing	to	construct	an	ANN-based	ADS	model.	101	

D. Configuration	of	the	source	estimation	parameters.	Both	temporal	and	spatial	investigation	102	
regions	 are	 defined	 in	 this	 step.	 Furthermore,	 initial	 parameters	 of	 the	 source	 estimation	103	
algorithm	should	be	determined	before	inverse	calculation.	104	

E. Estimating	the	source	of	atmospheric	dispersion	using	PSO	or	the	combination	of	PSO	and	EM.	105	

2.2	Structure	of	ANN	106	

Generally,	complicated	ADS	model	such	as	CFD	needs	quite	long	time	to	compute	the	concentration	107	
distribution,	while	simple	model	can	hardly	give	the	accurate	results.	To	address	this	problem,	ANN	108	
is	used	to	predict	the	concentration	of	the	interest	point	with	high	efficiency	and	accuracy	(Ma	and	109	
Zhang,	2016).	110	
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Table	1	Common	parameters	for	atmospheric	dispersion	model.	111	

Parameters	 Symbol	 Unit	

Downwind	distance	 	 m	

Crosswind	distance	 	 m	

Height	of	source	 	 m	

Height	of	interest	point	 	 m	

Release	rate	 	 g	s-1	

Atmospheric	stability	class	 	 /	

Wind	direction	 	 deg	

Wind	speed	 	 m	s-1	

Mixing	height	 	 m	

Cloud	height	 	 m	

Cloud	cover	 	 %	

Temperature	 	 K	

To	satisfy	the	emergency	requirements,	the	input	data	of	the	ANN	should	be	easily	to	obtain.	A	112	
rough	idea	is	using	all	the	measured	parameters	shown	in	Table	1	as	the	input	of	the	ANN.	However,	113	
it	is	quite	difficult	to	train	the	ANN	if	we	directly	put	these	parameters	into	input	layer	because	114	
features	 of	 the	 atmospheric	 dispersion	 should	 be	 extracted	 before	 training.	 Generally,	 the	115	
concentration	of	hazardous	gas	follows	Gaussian	distribution	on	crosswind	direction.	Moreover,	116	
the	concentration	of	a	specific	point	is	approximately	proportional	to	the	release	rate	and	inversely	117	
proportional	to	the	wind	speed.	Due	to	these	features,	as	shown	in	Fig.	1,	we	use	release	rate	 ,	118	
reciprocal	of	the	wind	speed	 ,	and	two	Gaussian	parameters	( 	 and	 )	on	y-	and	z-axes	as	119	
ANN	input.	The	expressions	of	 	 and	 	 are	shown	in	Eq.	 (1)	 according	to	the	experience	of	120	
Gaussian	dispersion	model.	121	

	 	 (1)	122	

where	 	 and	 	 represents	 the	 crosswind	 distance	 and	 the	 height	 of	 the	 interest	 point	123	
respectively.	 	 is	the	height	of	the	emission	point.	 	 and	 ,	which	represent	the	deviation	124	
of	 the	 Gaussian	 distribution,	 are	 the	 Gaussian	 dispersion	 coefficients	 affected	 by	 downwind	125	
distance	 	 and	atmospheric	stability.	Gaussian	parameters,	wind	parameters	and	source	term	126	
parameters	are	inputs	of	traditional	Gaussian	dispersion	model.	They	are	very	common	and	easy-127	
to-measure	 parameters	 (also	 simple	 to	 calculate	 in	 simulation	 software).	 Moreover,	 Gaussian	128	
dispersion	model	has	already	been	extensively	used	in	source	estimation	methods.	Thus,	by	using	129	
these	 parameters	 as	 the	 input	 of	 ANN,	 we	 can	 directly	 substitute	 ANN-based	 atmospheric	130	
dispersion	model	for	Gaussian	model	in	source	estimation,	without	changing	inputs.	131	

The	number	of	neurons	in	the	hidden	layer	could	be	determined	by	evaluating	some	important	132	
criteria	 (e.g.	 coefficient	 of	 determination).	 The	 output	 layer	 has	 only	 one	 neuron,	meaning	 the	133	
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concentration	of	the	interest	point.	The	algorithm	and	detailed	process	of	ANN	training	is	not	in	134	
our	research	scope,	so	the	ANN	will	be	directly	trained	by	MATLAB	neural	network	toolbox	in	this	135	
paper	(MATLAB,	2010).	136	

	137	

Fig.	1	Structure	of	the	fitting	ANN.	138	

2.3	Quantifying	release	rate	by	PSO	139	

The	 hazardous	 gas	 leak	 accidents	 can	 be	 classified	 into	 two	 categories.	 The	 category	 1	 is	 the	140	
accident	that	the	source	location	is	already	known,	while	the	category	2	is	the	accident	that	source	141	
location	is	unknown.	For	the	category	1,	we	can	just	use	PSO	algorithm	to	quantify	the	release	rate,	142	
which	is	explained	in	this	section.	As	for	category	2,	the	method	used	for	estimating	source	will	be	143	
introduced	in	section	2.4.	144	

PSO	algorithm	uses	specific	rules	to	drive	particles	to	quantify	the	emission	source	(i.e.	find	the	145	
optimal	release	rate).	Because	the	theory	and	deduction	of	PSO	are	beyond	the	scope	of	this	paper,	146	
we	 directly	 introduce	 the	 detailed	 steps	 to	 find	 the	 optimal	 release	 rate.	 First,	 generate	 	147	
particles	with	random	release	rate	 	 in	the	appropriate	range,	where	 .	Then,	set	148	
the	best	known	release	rate	of	each	particle	 ,	whose	value	equals	to	its	initial	release	rate	 .	149	
After	that,	initialize	a	random	velocity	of	each	particle,	and	keep	particles	updating	according	to	Eq.	150	
(2)	 until	the	algorithm	converges.	151	

	 	 (2)	152	

where	 	 represents	the	velocity	of	particle	 	 at	step	 .	 	 means	the	release	rate	of	particle	153	
	 at	 step	 .	 	 and	 	 are	 random	 number	 follows	 .	 ,	 ,	 and	 	 are	 PSO	154	

parameters	that	can	be	adjusted	to	improve	the	performance	of	PSO	algorithm.	In	this	paper,	 	155	
and	 	 equal	to	2,	and	 	 equals	to	 .	156	

At	each	step,	the	best	known	release	rate	of	each	particle	 	 will	be	updated	if	 ,	157	
where	 	 is	likelihood	function	(as	shown	in	Eq.	 (3)).	158	
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	 	 (3)	159	

where	 	 is	 release	 rate;	 	 is	 concentration	measurements;	 	 represents	 the	 output	 of	160	
ADS	model	with	input	 ;	 	 is	measurement	error	deviation.	Because	 	 never	changes	when	161	
the	algorithm	is	running,	we	only	have	to	compare	the	cost	function	 .	162	

Furthermore,	the	best	known	release	rate	of	all	particles	 	 will	be	updated	if	 	 at	163	
each	step.	When	the	algorithm	meets	the	convergence	condition	and	the	iteration	terminates,	 	164	
becomes	 the	optimal	 solution	of	PSO,	which	 is	also	 the	rough	expected	release	rate	 	 of	 the	165	
emission	source	based	on	MLE	principle.	166	

2.4	Estimating	source	by	EM	167	

It	 is	also	possible	that	people	do	not	know	the	location	of	the	emission	source.	To	estimate	the	168	
location	 ,	the	release	rate	 	 should	be	estimated	first.	However,	in	order	to	estimate	the	169	
release	 rate	 ,	 the	 location	 	 should	 be	 determined	 before.	 If	 estimate	 all	 parameters	170	
together,	 the	algorithm	will	become	difficult	 to	converge.	Consequently,	as	 shown	 in	Fig.	2,	EM	171	
algorithm	is	introduced	to	address	this	conflict.	172	

First,	 the	 initial	 value	 of	 release	 rate	 should	 be	estimated,	 denoted	 by	 .	 This	 value	 can	 be	173	
determined	according	to	prior	information	or	the	experience	of	expert.	Then,	the	algorithm	comes	174	
to	the	E-step.	In	this	step,	the	source	location	should	be	updated	if	the	release	rate	is	assumed	to	175	
be	 .	In	this	paper,	we	use	the	combination	of	ANN	and	PSO	to	find	the	optimal	solution	as	the	176	
estimation	of	expectation.	As	shown	in	Eq.	 (4),	the	likelihood	function	is	quite	similar	to	Eq.	 (3),	177	
where	the	variable	to	be	optimized	is	the	source	location	now.	178	

	 	 (4)	179	

After	source	location	being	estimated,	the	algorithm	comes	to	the	M-step.	The	target	of	this	step	is	180	
to	find	the	release	rate	with	maximum	likelihood.	In	this	step,	we	can	use	the	method	introduced	181	
in	 section	 2.3	 to	 maximize	 the	 likelihood	 for	 estimating	 the	 optimal	 release	 rate	 .	 The	182	
estimated	release	rate	 	 is	used	as	expected	release	rate	in	next	iteration	until	the	algorithm	183	
converges.	184	
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	185	

Fig.	2	Mechanism	of	EM	algorithm	for	source	estimation	186	

3	Application:	Indianapolis	field	study	187	

The	main	target	of	the	Indianapolis	field	study	is	to	simply	test	whether	the	proposed	method	is	188	
feasible	in	real	situation.	The	Indianapolis	experiment	was	implemented	during	16	September	to	189	
12	October	in	1985	(Hanna	et	al.,	2001).	Researchers	used	sulfur	hexafluoride	(SF6)	to	trace	the	190	
dispersion	 plume	emitted	 from	an	83.8m	height	 stack.	The	WGS84	coordinate	 of	 the	emission	191	
source	is	(39.8N	latitude,	86.2E	longitude),	and	its	Cartesian	coordinate	is	set	as	 .	During	16	192	
September	to	12	October,	monitoring	stations	has	sampled	totally	170	hours.	Meteorological	data	193	
were	 sampled	 from	 a	 94	 m	 height	 monitoring	 tower	 in	 a	 bank	 and	 three	 other	 10	 m	 height	194	
monitoring	 towers	 at	 urban,	 suburban,	 and	 rural	 respectively.	 About	 160	 ground-level	195	
concentration	monitoring	stations	were	established	at	the	distance	ranging	from	0.25	to	6.0	km	to	196	
the	emission	source.	197	

Measurements

E-step
ANN	+	PSO

Expected	release	rate	at	
ith	iteration

θq(i)

Expected		source	location
θx(i), θy(i)

Expected	release	rate	at	
i+1th	iteration

θq(i+1)

M-step
ANN	+	PSO

Algorithm	converges
Estimated	source
θq(N), θx(N), θy(N)

Initial guess of release rate
 θq(0) 

(0,0)
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	198	

Fig.	3	The	scenario	of	Indianapolis	field	study	199	

Based	on	the	range	and	size	of	the	Indianapolis	field	data,	the	configuration	of	ANN	and	PSO	can	be	200	
consequently	determined.	In	terms	of	the	input	of	the	ANN,	the	release	rate	parameter	 	 and	201	
wind	speed	parameter	 	 can	be	directly	calculated	using	Indianapolis	field	data.	Turn	to	the	202	
expressions	of	Gaussian	parameters	 	 and	 ,	it	can	be	found	that	the	values	of	 ,	 ,	 	203	
and	 	 are	 not	 in	 the	measured	data.	Therefore,	 the	 downwind	distance	 	 and	 crosswind	204	
distance	 	 should	 be	 first	 calculated	 using	 wind	 direction	 	 and	 Cartesian	 coordinates	205	

	 of	the	sensor	according	to	Fig.	3.	After	 	 and	 	 being	obtained,	Gaussian	dispersion	206	
coefficient	 	 and	 	 can	 also	 be	 calculated	 according	 to	 Vogt's	 scheme	 (Vogt,	 1977).	207	
Afterwards,	we	use	field	data	of	16	September	for	testing	(1152	samples).	Remaining	data	from	17	208	
September	to	12	October	is	used	for	training	and	validation	(70%	and	30%	respectively,	25396	209	
samples	in	total).	The	training	algorithm	of	the	ANN	is	Levenberg-Marquardt,	whose	maximum	210	
number	 of	 epochs	 is	 1000	 (if	 early	 stopping	 is	 not	 triggered).	 If	 validation	 accuracy	 shows	no	211	
improvement	 more	 than	 6	 epochs,	 the	 early	 stopping	 will	 be	 triggered.	 Training	 process	 is	212	
conducted	 via	MATLAB	neural	 network	 toolbox.	 The	 unit	 of	 release	 rate	 is	 kg	 s-1	 and	 the	 PSO	213	
algorithm	 in	 EM	 has	 100	 particles	 with	 initial	 random	 position	 satisfies	 that	214	

	 (unit:	km).	215	

The	number	of	neurons	in	the	hidden	layer	can	be	adjusted	by	users.	For	Indianapolis	experiment,	216	
by	plotting	the	R2	coefficient	as	a	function	of	number	of	neurons	in	the	hidden	layer,	we	can	find	217	
that	R2	increases	at	first	and	then	basically	follows	downwards	trend	when	the	number	of	neurons	218	
in	 the	hidden	 layer	 increases.	We	 finally	 find	 that	 the	ANN	can	obtain	 the	highest	R2	when	 the	219	
hidden	layer	of	the	ANN	has	18	neurons,	as	can	be	seen	in	Fig.	4.	220	
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	221	

Fig.	4	The	plot	of	R2	as	a	function	of	the	number	of	neurons	in	hidden	layer	222	

Fig.	 5	 shows	 the	 prediction	 result	 of	 16	 September,	 1985.	 Because	 the	 observed/predicted	223	
concentrations	of	lots	of	sensors	are	zero	(sensors	not	in	downwind	direction),	these	unimportant	224	
samples	could	make	performance	artificially	high.	To	evaluate	the	prediction	result	in	a	fair	and	225	
reasonable	 way,	 these	 “zero”	 samples	 are	 removed	 before	 performance	 analysis.	 Fig.	 5	 (a)	226	
demonstrates	 the	 comparison	 between	 observed	 measurements	 and	 ANN	 prediction	 result.	227	
Obviously,	the	predicted	concentrations	are	basically	distributed	around	the	perfect	fitting	line	y=x.	228	
Except	 for	R2	 (as	 can	 be	 seen	 in	 Fig.	 4),	 the	 factor	 of	 two	 (FAC2),	 fractional	 bias	 (FB)	 and	 the	229	
normalized	 mean	 square	 error	 (NMSE)	 can	 also	 be	 used	 to	 evaluate	 the	 performance	 of	230	
atmospheric	dispersion	prediction	(Lauret	et	al.,	2016).	The	FAC2	of	the	prediction	result	is	0.582,	231	
proving	 that	 the	 prediction	method	has	acceptable	 performance	 according	 criteria	 of	a	 “good”	232	
model	(FAC2	>	0.5)	(Chang	et	al.,	2004).	The	FAC2	over	and	under	prediction	lines	(y=2x	and	y=x/2	233	
respectively)	are	also	shown	in	the	figure.	Furthermore,	the	FB	of	the	result	 is	-0.0292	and	the	234	
NMSE	 is	 0.6861,	which	are	 quite	close	 to	 zero.	Fig.	 5	 (b)	 shows	 the	concentration	 distribution	235	
calculated	 by	 the	 ANN.	 The	 concentration	 distribution	 heat	 map	 can	 reflect	 the	 shape	 of	 the	236	
hazardous	gas	plume,	which	illustrates	that	the	over-fitting	problem	does	not	happen	on	this	ANN.	237	
Therefore,	the	trained	ANN	can	be	effectively	used	in	further	source	estimation.	238	

In	terms	of	calculation	duration	estimation,	when	the	number	of	neurons	in	the	hidden	layer	equals	239	
to	18	(the	optimal	number	according	to	R2	plot),	the	program	spends	197.729	seconds	for	training	240	
Indianapolis	data	(25396	samples)	for	50	times	(macOS	High	Sierra	version	10.13.2,	3.1	GHz	Intel	241	
Core	i5,	8	GB	2133	MHz	LPDDR3),	which	makes	average	training	duration	approximately	equal	to	242	
3.955	 seconds.	 When	 applying	 trained	 ANN	 to	 calculate	 concentration	 of	 all	 sensors	 over	243	
September	16th,	1985,	the	ANN	spends	3.045	seconds	for	running	50	times.	Therefore,	the	average	244	
calculation	 duration	 in	 this	 case	equals	 to	 0.061	 seconds.	 Further,	 it	 is	 also	 quite	 important	 to	245	
estimate	 the	 concentration	 distribution	 in	 a	 specific	 area.	 When	 estimating	 the	 concentration	246	
distribution	in	a	rectangular/square	area	(with	100×100	grids),	the	average	calculation	duration	247	
of	50-times	running	is	0.097	(4.828/50)	seconds.	248	



10	

	

	249	

Fig.	5	The	result	of	SF6	dispersion	prediction	based	on	ANN.	(a)	Comparison	of	ANN	output	and	250	
measurements.	(b)	Concentration	distribution	generated	by	ANN.	251	

If	the	source	location	is	known,	using	10	particles	can	make	PSO	converges	very	soon.	To	present	252	
the	PSO	process	more	clearly,	in	Fig.	6,	only	3	particles	are	used	to	slow	down	the	PSO	convergence	253	
speed.	Fig.	6	shows	20	iterations	of	PSO	algorithm. The	optimal	release	rate	is	finally	stable	at	qg	=	254	
5.118×10-3	kg/s.	Compared	to	real	release	rate	qr	=	4.940×10-3	kg/s,	the	relative	error	is	only	3.61%.	255	
Therefore,	 the	 proposed	 source	 estimation	method	 has	 high	 accuracy	 if	 the	 source	 location	 is	256	
known.	257	

If	the	source	location	is	an	unknown	parameter,	the	integration	of	ANN,	PSO	and	EM	is	used	to	258	
locate	and	quantify	the	emission	source.	The	EM	algorithm	converges	very	soon	within	five	steps.	259	
In	the	end,	the	estimated	release	rate	is	qg	=	5.507×10-3	kg/s	(relative	error	is	9.99%),	and	the	260	
location	error	of	the	source	is	2.116×10-3	km	(only	accounts	for	1.76%	of	the	investigate	area	length	261	
12	km),	which	means	the	proposed	method	is	also	acceptable	in	practice	if	the	source	location	is	262	
unknown.	263	

	264	

Fig.	6	Process	of	PSO	algorithm	when	finding	optimal	release	rate.	265	



11	

	

4	Conclusions	266	

This	paper	proposed	a	novel	method	for	quantifying	and	locating	the	emission	source	using	ANN,	267	
PSO	and	EM.	The	Indianapolis	field	study	is	implemented	to	prove	that	this	method	is	feasible	in	268	
practice.	 The	 results	 of	 the	 field	 study	 show	 that	 the	 proposed	method	 is	able	 to	estimate	 the	269	
emission	source	with	acceptable	accuracy	and	efficiency.	270	

Hazardous	gas	leak	accident	needs	quick	response	and	high	accuracy.	The	ANN-based	prediction	271	
method	 is	 equipped	with	 these	 two	 features.	 In	 terms	of	 EM	 algorithm,	 the	 advantages	 of	 the	272	
proposed	method	are:	(1)	using	ANN	to	predict	gas	dispersion	accurately;	and	(2)	applying	EM	to	273	
address	the	problem	of	source	estimation	efficiently.	274	

Atmospheric	dispersion	prediction	and	source	estimation	based	on	ANN,	PSO	and	EM	could	be	275	
used	 in	 emergency	 management	 by	 two	 ways	 in	 the	 future:	 (1)	 Field	 experiments	 could	 be	276	
conducted	 in	chemical	 industry	parks	or	nuclear	power	plants	 to	 sample	enough	data	 for	ANN	277	
training.	(2)	If	it	is	difficult	(or	even	impossible)	to	collect	sufficient	data	or	parameters	from	field	278	
study,	atmospheric	 dispersion	 simulation	and	 risk	analysis	 software	 could	 be	 used	 to	 generate	279	
“pseudo”	scenarios	and	corresponding	data	for	ANN	training.	Once	the	accident	happens	in	these	280	
places	(chemical	industry	parks	or	nuclear	power	plants),	the	integration	of	pre-trained	ANN	and	281	
source	estimation	methods	can	be	applied	to	analyze	the	accident.	282	

However,	the	method	proposed	in	this	paper	also	has	some	problems.	The	current	method	uses	the	283	
average	wind	direction	and	wind	speed	as	input,	which	requires	that	the	meteorological	condition	284	
should	be	relatively	stable.	Furthermore,	the	ANN	prediction	result	beyond	the	training	range	is	285	
also	not	accurate	enough.	Future	work	will	involve	the	complex	release	scenario	containing	terrain,	286	
plants	and	facilities.	Current	problems	will	also	be	addressed	in	the	future.	287	
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