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Abstract

Autonomous mobile robots have been gradually employed to search unknown

sources in indoor environments. However, current studies have not fully ad-

dressed the source searching problem in unknown obstructed environments

with limited sensing abilities. To deal with these problems, we propose an

active source searching framework, in which mobile robots can avoid obsta-

cles actively and realize the balance between exploration and exploitation

in unknown obstructed environments through an iterative process: source

estimation, target determination, and path planning. First, we describe the

source searching problem and introduce the environment and sensor models.

Then, a novel source searching algorithm based on particle filter, MEGI-taxis,

and A-star is proposed. Specifically, the particle filter is used to estimate the

source term parameters. The MEGI-taxis algorithm is developed to obtain

a globally optimal searching target, which leverages the Gaussian Mixture

Model to extract the features of probability information. Based on the heuris-
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tic rule, the A-star algorithm is employed to plan a collision-free path for the

robot navigating to the target in unknown environments. When compared

to state-of-the-art solutions in simulations, our method shows better per-

formance in success rate, mean searching steps, and stability in the source

searching process. Moreover, the e↵ectiveness of the proposed framework is

verified in the di↵usion field generated by the computational fluid dynamics

(CFD) model based on an indoor scene. The results reveal the important

practicality of our proposed framework for source searching tasks in unknown

obstructed environments.

Keywords: indoor source localization; unknown obstructed environments;

source searching; source estimation; target determination; path planning;

1. Introduction

Source searching is a common problem faced by nature and human society.

A typical example is the source term estimation of a hazardous gas leakage

source in the indoor environment [1, 2, 3, 4]. In the problem, searchers need

to collect chemical or other signals released by the source to determine the

location of the source. Traditional source term estimation methods [5, 6, 7, 8]

are limited by the deployment of fixed sensor networks. Nowadays, with the

technological developments in sensors and robotics, mobile robots carried on

sensors are chosen to complete the task for their high e�ciency, low risk and

accuracy of locating the source. This way establishes probabilistic estimation

of the source location by sensing the concentration of leaked substances.

Then, it continuously collects information to update the estimation of the

source. Finally, mobile robots declare the source location and obtain the
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source term parameters.

The early source searching algorithms were based on bionics principles [9].

They studied animals’ ways of searching for the odor source and carrying

out path planning [10]. For instance, Muller et al. [11] proposed the spiral

searching program, taking inspiration from the foraging of ants. The Lévy

searching pattern was [12] discovered by studying the dataset of the move-

ments of predatory fish in the high seas. While observing the trajectories of

animals, researchers also studied the mechanisms behind their movements.

For instance, motile bacteria are easily attracted by certain chemicals [13].

Learned from this phenomenon, Alder et al. designed a Chemotaxis strategy

to guide a searcher to move in the direction of the concentration gradient [14].

Incorporated with fluid and chemical concentration measurements and esti-

mation of the mass flux, Zarzhitsky et al. [15] developed a physics-based

approach to the localization of chemical sources, which found the source by

climbing up the mass flux gradient. The bionics principles show superiority

in low computational complexity due to their simplicity in theory, but their

performance is limited by the ubiquitous turbulence.

Other than the bio-inspired algorithms, researchers also proposed and de-

veloped various cognitive strategies [16, 17, 18, 19, 20, 21] based on information-

theoretic principles to solve source searching problems. Through guiding

searchers to move along the information entropy gradient, Infotaxis algo-

rithm [16] realized a more accurate estimation of source terms within a

shorter searching time, compared with bio-based algorithms. Ristic et al. [17]

adopted the particle filter method to estimate the source term parameters

and compared the influence of di↵erent reward functions on cognitive strate-
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gies. Based on that, Hutchinson et al. [18] devised a reward function based

on maximum entropy sampling to locate the source with fewer steps, namely

Entrotaxis. Later on, a study [19] that combines the entropy and the poten-

tial energy is proposed to realize the exploration-exploitation balance. With

the development of Artificial Intelligence (AI), AI methods are applied to

the source searching field [22, 23, 24, 25, 26]. Wang et al. [27] designed a

fuzzy controller to localize odor sources via adaptive bio-inspired navigation.

Deep reinforcement learning techniques are applied as a source searching ap-

proach for the first time in the literature [28]. Though these strategies greatly

improved the performance of source searching in turbulent situations, they

would face new challenges when considering more practical environments, for

example, the indoor scenes with obstacles.

Facing possible obstacles in indoor environments, current studies have

adopted various mechanisms to guide the searcher to avoid obstacles and

further to reduce the possibility of being trapped. For instance, Jatmiko

et al. [29] modified the particle swarm optimization algorithm to limit the

possibility of being trapped in a local maximum. To search in a scene with

simple obstacles, Liu et al. [30] designed a supervisory program to control

a group of mobile robots. By integrating the Lévy searching pattern, the

Entrotaxis-Jump algorithm [31] was proposed to guide the mobile sensors to

search in a chemical cluster with complex obstacles. To simulate how gases

disperse in any 3D environment (including obstacles), Monroy et al. [32, 33]

present an open-source gas dispersion simulation framework, GADEN, which

is widely used to evaluate and test gas source localization algorithms [34,

35]. Moreover, some studies also focused on the searching process in an
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unknown scene. For example, Ristic et al. [36] devised a strategy based on

Rao-Blackwellised particle filter to drive the searcher. Kamarudin et al. [37]

combined the simultaneous localization and mapping (SLAM) algorithm with

Gas distribution mapping (GDM) to solve the problem. In addition, to

solve the searching problem in a random obstructed environment, Zhao et

al. [38] devised a passive escaping mechanism in the cognitive strategies to

avoid obstacles. Although these attempts can solve the source searching

problem in complex scenes with obstacles to some extent, they fail to provide

an active and e�cient solution for source searching in unknown obstructed

environments.

Taking more practical factors into account when searching in unknown

obstructed environments (i.e. indoor environments), the searchers often have

to make e↵ective and e�cient motion decisions with limited sensing abilities

and instantly available information. To solve the searching problem in this

condition, we have to face several new challenges: a) existing source search-

ing strategies based on the reward function often trap the searcher in the

local part of the scene when the source searching environments are complex

since they fail to provide globally optimal decisions at each step. Therefore,

it is di�cult to design e�cient strategies for the searcher to choose the glob-

ally optimal action for the current state. b) obstacles in the searching scene

would hinder the searcher’s movement, especially when the searcher has less

knowledge of the environment. Thus, it is di�cult to design a strategy for

the searcher to actively avoid the obstacles during the process of reaching its

searching target; c) searching for a source in an unknown obstructed scene

requires the searcher to collect more information than that in a simple scene,
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so it is di�cult to balance the exploration and exploitation during the search-

ing process, i.e., choose to collect more information to update the estimation

of the source term or take actions according to the current estimation.

To overcome these challenges, we propose an active source searching

framework for the searching problem in unknown obstructed environments,

which realizes the active searching of a leakage gas source at high e�ciency

in unknown obstructed environments through source estimation, target de-

termination, and path planning. To put the framework into practice, we pro-

pose the Active source searching algorithm based on Particle filter, MEGI-

taxis and A-star (the APMA algorithm). The performance of our proposed

framework and algorithm is further verified through theoretic analysis and

extensive simulations. The main contributions of this work are concluded as

follows:

• This paper proposes an active source searching framework to solve the

source searching problem in unknown obstructed environments. The

framework actively avoids obstacles to search the source in unknown

obstructed environments by integrating source estimation, target de-

termining and path planning with limited sensing abilities.

• To address the first challenge, this paper adopts the Gaussian Mix-

ture Model (GMM) to fit the distribution of samples in particle filter,

and obtains the mean point of the Most E�cient Gaussian dIstribu-

tion (MEGI). We take the mean point as the searching target, which

provides searchers with a globally optimal solution for the current sit-

uation.
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• To address the second challenge, this paper introduces the occupancy

grid map to represent the source searching scenarios and describes the

environment and sensor models. Based on the models, the heuristic rule

is employed with the A-star algorithm to plan a path in the partially

known regions, which actively assists searchers to avoid the obstacles.

• To address the third challenge, this paper identifies the factors influ-

encing searchers to balance exploration and exploitation, and conducts

extensive experiments to determine a better combination of parameters

to realize the exploration-exploitation balance.

• Based on the framework, this paper proposes the APMA algorithm.

The algorithm is extensively tested both in simulated concentration

field and realistic concentration field by comparing with existing meth-

ods [18, 38], which performs well in success rate and mean search steps.

The remainder of this paper is organized as follows. In Section 2, we

describe the source searching problem and introduce the environment and

sensor models. In Section 3, we propose an active source searching frame-

work working in unknown obstructed environments, which includes source

estimation, target determination and path planning. In Section 4, we pro-

pose the APMA algorithm to put the framework into practice. In Section

5, we present an illustrative run and conduct extensive simulations to ex-

plore the properties of the MEGI-taxis algorithm. Finally, we present the

conclusion and future work in Section 6.
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Figure 1: Environment representation. (a) An example of the source searching scenario;
(b) occupancy grid map. In (b), white, black and gray grids represent free, occupied and
unmapped grids respectively. Free grids represent the area where the searcher can move
in. Occupied grids denote the area where obstacles exist. Unmapped grids mean the area
unknown to the searcher.

2. Problem formulation

2.1. Source searching problem

The source searching problem addressed in this paper is to guide a mo-

bile robot searcher to localize a gas source in an unknown environment with

obstacles, as illustrated in Fig. 1 (a). A gas source S that constantly emits

gas particles in the environment is considered. Denote by rs = {xs, ys} the

source’s location and Q its emitting rate. The searcher, a mobile robot with

sensors located at r = {x, y}, shall move in the environment and collect

measurements to estimate the source term parameters ✓s = {rs, Q}. Consid-

ering that the gas is a↵ected by a mean current or wind with V of its speed

and 'V of its direction in the di↵usion process, according to the steady-state

convective di↵usion equation [16, 18], the gas concentration at the location

r = {x, y} is formulated as:
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c(r|✓s) =
Q

4⇡D|r � rs|
e

�(x�xs)V sin'V
2D e

�(y�ys)V cos'V
2D e

�|r�rs|
� (1)

where � =
q

D⌧
1+V 2⌧/4D , D is the gas e↵ective di↵usion coe�cient and

⌧ is the gas molecular lifetime. Assuming that the gas e↵ective di↵usion

coe�cient D, gas molecular lifetime ⌧ , wind speed V and direction 'V are

known, the quantity to be estimated for the gas source search process is the

source term parameter ✓s = {rs, Q}.

The objective of the source searching task is to guide the searcher to move

in the environment and constantly collects measurements along its travelled

path (gas concentration data) to eventually find an accurate estimation of

the source’s parameter ✓s. In the following, we will describe the environment

model and the robot’s gas sensor model in detail.

2.2. Environment and sensor models

2.2.1. Environment representation

As illustrated in Fig. 1 (b), a two-dimensional environment with a set of

static obstacles is considered. The environment is represented as an occu-

pancy grid map that consists of Nm ⇥ Nn grids. Each grid has a length ds

and is either marked as free or occupied according to if there is an obstacle

occupying it. Let Nob be the total number of occupied grids of the map,

then Pob=
Nob

Nm⇥Nn
is defined as the obstacle percentage of the environment.

Intuitively, when Pob is larger, it might be infeasible for the searcher to find

a passable path to move along in the environment. Hence, in this paper, we

set Pob < 0.4 to ensure satisfactory connectivity of the environment [39].

The occupancy map is initially unknown to the searcher. With the robot

moving in the environment, it can sense the surrounding areas and thus
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explores the map. Hence, the map can be divided into two regions for the

robot: the known (explored) and the unknown (unexplored). To simplify the

problem, we assume that the robot can only move between two connected free

grids and has a limited sensing range R � ds. The states (free or occupied)

of the grids within the robot’s sensing range are known to the robot. This

can be achieved by equipping the robot with onboard sensors such as a depth

camera or 2D rangefinders [40, 41].

2.2.2. Gas sensor model

When the searcher moves along a path, its gas sensor will collect the gas

concentration data at its current position. During the source searching pro-

cess, the sensor needs to sense the signal within a limited time for the purpose

of saving time [16]. Berg et al. [42] studied the chemoreception process of

spherical sensor (radius a) under the condition of limited measurement time

and concentration. Similar to that process, we convert the gas concentration

data at location r, using the Smoluchowski formula [43], into the average

number of contacts between the sensor and the gas molecules per unit time:

Nc(r|✓s) = 4⇡D · a · c(r|✓s) (2)

In real environments, the gas di↵usion is a↵ected by turbulence, resulting

in a disturbing concentration field. Thus, the sensor can only obtain sporadic

and intermittent e↵ective readings when sensing. In the cognitive search

strategy, we use the Poisson process to simulate the e↵ect of turbulence

e↵ect on the gas concentration field [18] as shown in Fig. 2 (b), and define

Nc(r|✓s) as the intensity of the Poisson process. Then, the probability that

the sensor touches the gas molecules d(r) times per unit time at position r is
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(a) (b)

Figure 2: Gas Sensor model. (a) Gas di↵usion scenario based on the steady-state convec-
tive di↵usion equation; (b) Detection value of sensors.

Pc(d(r)|✓s) =
Nc(r|✓s)d(r)

d(r)!
e�Nc(r|✓s) (3)

The number of gas contacts at any location of the source search scene can

be generated according to the random number generation method of Poisson

distribution [16].

3. An active source searching framework in unknown obstructed
environments

The source searching algorithms [16, 17, 18] based on the cognitive search

strategy perform well in simple environments without obstacles. However,

in the unknown obstructed environments, the concept of using reward func-

tion to guide the movement of searchers may not be applicable. Since the

reward function only provides the searcher with a locally optimal decision,

searchers are easily trapped in areas with complex obstacles and eventually
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fail to complete the searching mission. In this section, we propose an active

source searching framework to solve the source searching problem in unknown

obstructed environments.

As the source location is unknown until it is found, the searcher needs

to establish the estimation of source location based on sensing cues during

the searching process. To avoid being trapped in locally optimal decisions,

it is necessary to integrate the estimation information, which determines a

global target instead of optimizing at every step. However, in the unknown

obstructed environments, it is di�cult for the searcher to plan the path nav-

igating to the target in the partially known obstructed environments due to

the obstruction of obstacles. Therefore, traditional path planning algorithms

need to be devised to adapt to unknown obstructed environments. Based

on the above requirements, the framework shown in Fig. 3 consists of three

parts: source estimation, target determination and path planning.

Source estimation: the posterior probability density function (Bayesian

method) is carried out to estimate the source term parameters. The searcher

updates the source estimation according to the Bayes rules as sensory data

are obtained. The method of estimation includes particle filter [17], Kalman

filter [44], particle swarm optimization [2], etc.

Target determination: By integrating the probability information of

the source term estimation, we will find the regions with the highest prob-

ability of existing the source. The center of the regions is determined as

the target of the source searching process. The method of integrating the

probability information includes DBSCAN [38], GMM, neural network, etc.

Path planning: Based on the occupancy grid map built in Section 2.2.1,
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unknown obstructed environments

Target 
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Path planningSource    
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Figure 3: The active source searching framework in unknown obstructed environments.

a heuristic idea is introduced to address the problem of how to use a path

planning algorithm to plan an optimal path navigating to the target in the

partially known obstructed regions. The method of path planning includes

Rapid-exploration Random Tree (RRT), A-star, etc.

The proposed framework provides a novel and feasible solution for source

searching in unknown obstructed environments. To realize the framework,

the APMA algorithm consisting of three parts is proposed. The method of

particle filter is adopted to estimate the source term parameter. The target is

determined by the MEGI-taxis algorithm. The A-star algorithm is employed

to plan paths navigating to the target in the partially known obstructed

environments. The detail of the APMA algorithm is described in Section 4.
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4. The APMA algorithm

Based on the framework in Section 3, we design the flow of the Active

source searching algorithm based on particle filter, MEGI-taxis and A-star,

as shown in Fig. 4. Firstly, the searcher obtains sensory readings by sens-

ing the surroundings. Then, the estimation of the particle filter is updated

according to the sensing data, which generates new samples of the particle

filter. We use the GMM to fit the samples and produce several Gaussian

distributions. As the source is highly possible to exist in the region of the

Most E�cient Gaussian dIstribution (MEGI), the searcher takes the mean

point of the MEGI as the searching target. In addition, we use the A-star

algorithm [45] to plan the path across the known and unknown regions based

on the heuristic idea. Finally, the searcher moves along the planned path

and checks if the source is determined. If the searching process is not ter-

minated, the searcher will continue to search the source, as described in the

above-mentioned process.

4.1. Source term estimation based on the particle filter

In the cognitive search strategy, the source search process is modeled as a

Partially Observable Markov Decision Process (POMDP) [18]. Based on the

information sensed at each step, the searcher updates the information state

and selects the appropriate action to execute from a set of available actions.

Then the searcher obtains new sensing information and keeps repeating this

decision process until the source is determined.

In this section, we use the Bayesian method to estimate the source term

parameters, and define the information state in the partially observable

Markov decision process as a posterior probability density function. Then,
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Figure 4: Flowchart of the APMA algorithm

we use the posterior probability density function to represent the estimation

of the source term parameters. As the information perceived at each step

updates our estimate of the source term parameters, the posterior prob-

ability density function at step k can be expressed as P (✓k|Nk
a ), where

Nk
a=

�
N1

c (r1), N
2
c (r2), · · · , Nk

c (rk)
 
denotes all the information collected in

the first k steps, and ✓k denotes the source term parameter estimated at k

step. When the sensors collects new information, the posterior probability

distribution can be updated using the Bayesian formula [18, 46]:

P (✓k|Nk
a ) =

P (✓k�1|Nk�1
a )P (Nk

c (rk)|✓k)
P (Nk

c (rk)|Nk�1
a )

(4)

where
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P (Nk
c (rk)|Nk

a ) =

Z
P (✓k�1|Nk�1

a )P (Nk
c (rk)|✓k)d✓k (5)

Any information about the source can be used to generate a prior knowl-

edge to represent the prior probability P (Nk
c (rk)|Nk�1

a ). If no prior informa-

tion is available, then a uniform distribution is used to represent the initial

prior probability distribution. Meanwhile, the prior distributions are replaced

by the posterior probability distribution in subsequent iterations.

The cognitive search strategy uses a particle filter approach to achieve

Bayesian estimation of the source term parameters [18]. Since Eq.5 is di�cult

to calculate by functional expressions, P (✓k|Nk
a ) can be approximated by a

set of N weighted random samples (particles) {(✓ik, wi
k)}1iN as:

P (✓k|Nk
a ) ⇡

NX

i=1

wi
k�(✓ � ✓ik) (6)

where ✓ik denotes the point estimate of the ith sample at k step for the

source term parameter, wi
k denotes the normalized weight of the ith sample

at k step satisfying
NP
i=1

wi
k = 1. � is the Dirac delta function.

We then update the sample weights by sequential importance sampling [47]

according to:

w̃i
k=wi

kP (Nk
c (rk)|✓ik) (7)

The new approximate Bayesian estimate is obtained after standardiza-

tion:
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wi
k=

wi
k

NP
i=1

w̃i
k

(8)

To avoid samples degeneracy, we use a resampling step to increase par-

ticle diversity [47]. The resampling step occurs under the conditions that
maxP
Nc=0

P (Nc|Nk
a ) > ⌘, where ⌘ denotes the resampling threshold.

4.2. Target determination based on the MEGI-taxis algorithm

We proposed a source searching algorithm (MEGI-taxis) based on the

Gaussian Mixture Model (GMM). The algorithm uses the GMM to fit the

particle filter estimation of the source location to obtain multiple Gaussian

distributions of the particles. The distribution of samples in the particle filter

process represents a probabilistic estimate of the source location. The source

has a high probability to exist in the area of dense samples distribution.

Therefore, we assume that it has the highest probability for source location to

exist in the area where the largest proportion of sub-Gaussian distributions

(MEGI) are located. In this paper, we prefer to explore the MEGI area

instead of moving guided by a reward function.

The posterior probability distribution of the source term parameters can

be fitted by the Gaussian mixture model as:

P (✓k|Nk
a )=

KX

i=1

⇡iG (✓|µi,⌃i) (9)

where G (✓|µi,⌃i) denotes the Gaussian distribution with mean µi and

covariance ⌃i. The coe�cients of the Gaussian distribution ⇡i satisfy
KP
i=1

⇡i =

1. The above equation can be solved by the EM algorithm [48].
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Since the Gaussian distribution with the largest ⇡i occupies the largest

number of samples, and the Gaussian distribution is defined as the Most

E�cient Gaussian dIstribution (MEGI), the source in the region where MEGI

is located has the highest probability of existence, so the mean point of this

Gaussian distribution, µi, can be used as the target point for source searching.

The target point of the whole source searching scene

4.3. Path planning based on A-star algorithm

The MEGI-taxis algorithm provides searchers with the global optimal

searching target, but it is still challenging to plan an optimal path through

known and unknown regions to the target. To solve the problem, this paper

introduces the path planning algorithm to the active source searching frame-

work based on a heuristic idea and proves the optimality of the algorithm.

Firstly, we divide the path planning process into two parts, the path planning

of the known regions and the path planning of the unknown regions. Then

we make the following definitions.

Definition Denote the searcher’s current position as the start point s and

the center of the MEGI area (the mean point of the Gaussian distribution)

as the endpoint e. Define the boundary nodes between the known region and

the unknown region as n. The valuation function h(n) expresses the distance

from node n to the target node e, and g(n) expresses the distance from the

searcher’s current position s to the boundary node n. Then the total cost

for the searcher to move to the target node is:

F (n) = g(n) + h(n) (10)

The optimal cost under the optimal path i:
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F ⇤ (n) = g⇤(n) + h⇤(n) (11)

Theorem Assume the unknown region as a blank region in the path

planning process. Then we can find a node n that makes the path through

known and unknown regions to the target is the globally optimal solution.

Proof For the known region, g⇤(n) can be obtained directly by existing

path planning algorithms, while for the unknown region, we define

h(n) = |Xe �Xn|+ |Ye �Xn| (12)

which is the Manhattan distance from the boundary node n to the target

node e. As there are obstacles in the unknown region, it is obvious that

h(n)  h⇤(n) (13)

If the Eq.13 holds, according to the heuristic rule, we can prove that plan-

ning a path through known and unknown regions to the target is admissible,

i.e., the searcher can find a optimal path from the initial node to the target

node in a finite number of steps.

When we assume the unknown regions as a blank region in the search

process, the requirements of Eq.13 are satisfied. Therefore, we can use the

existing path planning algorithm like A-star [45] to plan the optimal path

through known and unknown regions to the target based on the theorem.

5. Experiments

In this section, this paper demonstrates the performance and generality

of the APMA algorithm through several numerical simulations. In section
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5.1, we use an illustrative run to describe the detail of the typical source

searching process. Then, to show the superiority of the APMA algorithm,

we compare the results of existing source searching strategies with that of

our method in Section 5.2. Furthermore, in Section 5.3, we analyze the

impact of several important parameters on the sensitivity and stability of

the APMA algorithm. Finally, the Computational Fluid Dynamics (CFD)

software, FLUENT, is employed in Section 5.4 to generate the gas di↵usion

field that can be considered as close to the ground truth. The confirmatory

experiments are conducted in that field to further verified the e↵ectiveness

of the proposed algorithm.

5.1. An illustrative run

An illustrative run of the APMA algorithm is shown in Fig. 5. The

associated simulation parameters are set as follows: l=20, ds=1, Pob=0.35,

Q=2, D=1, V=2, 'V=0, N=2000, rs = {7.76, 13.30}, r = {3.5, 1.5}. The

source searching process is terminated when the Euclidean distance between

the searcher and the source dis < 1 or the variance of the samples in the

particle filter var < 1. The former situation means that the searcher has

successfully found the source location, while the latter situation denotes the

convergence of the estimation of the source location. If the estimate loca-

tion that converged by the source term estimation is the source location,

the source searching is successful. Otherwise, the source searching fails. In

addition, if the searcher cannot find the source within the specified num-

ber of search steps (step = 500), the source searching process also will be

terminated denoting the failure of the searching mission.

As shown in Fig. 5, orange round and triangle indicate the source lo-
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Figure 5: An illustrative run of the source searching process at step: (a), (b), (c) indicates
k = 2; (d), (e), (f) indicates k = 21; (g), (h), (i) indicates k = 36. In addition, (a), (d),
(g) show that how the samples of particle filter is clustered by the GMM and how the
target is determined; (b), (e), (h) show that how the path from the searcher to the target
is planned in the unknown obstructed environments; (c), (f), (i) show the whole source
searching process.

cation and the mean point of the MEGI (target) respectively. Blue lines

represent the path planned the by A-star algorithm and pink lines represent

the path taken by the searcher. Green circles denote the position of the

searcher. Blue, green and purple dots denote samples of the particle filter,

where purple samples belong to MEGI. Pink dots and pink asterisks mean

the zero measurement and non-zero measurement. The grids have three dif-

ferent colors in the source searching scene: black grids are regions that have

obstacles, gray grids are unknown regions, white grids are regions that the
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searcher can pass.

In Fig. 5, at step k = 2, the initial state of the source searching pro-

cess, the samples in the particle filter are uniformly distributed in the source

searching scene. The APMA algorithm guides the searcher to move toward

the center of the MEGI to obtain more information about the source items

estimation. At step k = 21, as the number of source searching steps increases,

the known regions sensed by the searcher is also expanded. The samples in

the particle filter gradually gather near the source location, showing that the

distance between the target and the source location is decreasing. Finally,

at step k = 36, the searcher successfully finds the source location and the

source searching task is successful.

5.2. Comparisons to baselines

In this section, we compare the APMA algorithm proposed in this paper

with three baselines through extensive simulation experiments. We selected

the Entrotaxis algorithm [18], a classical algorithm based on cognitive strat-

egy, and the IWFA and EWFA algorithm [38] which are demonstrated as

performing well in obstructed scenes. Simulation parameters follow the set-

tings in section 5.1 except for independent variables. The experimental scenes

have five di↵erent types P0 = 0.15 : 0.05 : 0.35 of obstructed scenes, each

type of which sets 100 randomly generated maps. The source location and

the initial position of the searcher are generated randomly in each map. To

avoid the interference of irrelevant variables, the same set of random scenes

is used in each control group.

The performance of the source searching algorithms is evaluated with two

metrics common, the Success Rate (SR) and the Mean Search Steps (MSS)
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Table 1: PERFORMANCE COMPARISON OF DIFFERENT SOURCE SEARCHING
ALGORITHMS (ENTROTAXIS, IWFA, EWFA AND APMA) ACROSS THE FIVE DIF-
FERENT TYPES OF SCENES (P0 = 0.15 : 0.05 : 0.35) IN EACH 100 DIFFERENT
MAPS.

Entrotaxis IWFA EWFA APMA
SR

P0 = 0.35 44% 91% 71% 100%
P0 = 0.30 62% 91% 81% 98%
P0 = 0.25 67% 96% 89% 99%
P0 = 0.20 90% 99% 98% 99%
P0 = 0.15 92% 99% 98% 99%

MSS
P0 = 0.35 90.32±98.85 81.41±61.05 86.83±94.21 68.17±50.52
P0 = 0.30 85.74±94.79 70.90±47.99 76.38±82.60 63.94±42.14
P0 = 0.25 75.66±86.97 64.61±52.14 75.20±83.06 60.71±41.04
P0 = 0.20 71.78±63.31 64.96±58.75 62.26±52.17 61.20±48.04
P0 = 0.15 52.51±52.80 60.41±49.40 48.85±42.09 52.22±36.32

conventionally. As shown in Table 1, the APMA algorithm proposed in this

paper shows well performance in two metrics, and the superiority is more

obvious with an increase of P0. The SR of the APMA algorithm is close

to 100%, which is better than baselines, especially when P0 = 0.35. The

maximum improvement in MSS of APMA is 16.26% when P0 = 0.35. How-

ever, the MSS of the APMA algorithm is higher than that of the EWFA

algorithm in simple obstructed scenes like P0 = 0.15. This reason is that the

APMA algorithm proposed in this paper is designed for source searching in

unknown obstructed scenes, which results in that simple obstructed scenes

cannot reflect its superiority. In addition, the variance of both metrics of the

APMA algorithm is significantly reduced compared to the other algorithms.

More precisely, the APMA algorithm reduces the uncertainty and error of

source searching in unknown obstructed environments. In conclusion, com-
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pared with baselines, the APMA algorithm not only has advantages in the

searching e�ciency, but can also complete the source searching task more

stably.

5.3. Impact of parameters in the APMA algorithm

Three important parameters might a↵ect the performance of the APMA

algorithm: sensing range R, the number of Gaussian distributions K and

resampling threshold ⌘. R is the main parameter influences the known regions

to the searcher. K mainly impacts the result of the GMM estimation, which

determines the location of the target point. ⌘ is the parameter that balances

the exploration and exploitation of the source searching process. In this

section, we will examine the result of the simulation experiments when these

parameters are varied.

5.3.1. Sensing range R

The sensing range of di↵erent source searching robots is various. For

instance, the ground-based robot generally can only sense the surrounding

obstacles with a limited sensing range while the UAV-based searcher can ac-

quire a panoramic view with a large sensing range. The increase of the sensing

range enables the searcher to update the occupancy grid map more quickly.

Consequently, a better search path may be found that lets the searcher find

the source with fewer steps. To investigate the impact of di↵erent sensing

range on the search performance, we set three values of sensing range like

1, 2, 3, which correspond to the situations that the searcher can obtain the

information of obstacles in 8, 24, 48 surrounding grids in each step, respec-

tively. The experiments are conducted with the three values of sensing range
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in five types of obstructed scenarios with P0 = 0.15 : 0.05 : 0.35, resulting in

15 groups of experiments. The results are shown in Table 2.

Table 2: PERFORMANCE COMPARISON OF DIFFERENT R IN APMA (R = 2 : 1 : 4)
ACROSS THE FIVE DIFFERENT TYPES OF SCENES (P0 = 0.15 : 0.05 : 0.35) IN
EACH 100 DIFFERENT MAPS FOR TEN TIMES.

R 2 3 4
SR

P0 = 0.35 98.8% 99.3% 99.2%
P0 = 0.30 99.4% 99.4% 99.5%
P0 = 0.25 99.4% 99.2% 99.6%
P0 = 0.20 99.4% 99.0% 99.1%
P0 = 0.15 99.9% 99.5% 99.8%

MSS
Po = 0.35 68.66±51.52 66.72±49.33 65.59±44.65
Po = 0.30 65.37±47.04 62.77±45.36 62.87±48.58
Po = 0.25 62.59±45.82 62.61±48.51 61.64±45.82
Po = 0.20 63.90±45.97 64.03±46.29 64.83±49.91
Po = 0.15 57.22±41.25 57.67±43.99 55.81±41.64

As shown in Table 2, the performance of the proposed algorithm shows

stability with di↵erent sensing ranges. In terms of the MSS, the searcher

with a wide sensing range has a slight advantage in general. An increase

in the sensing range allows the searcher to obtain more information of the

obstructed environments, enabling it to detect obstacles in advance and plan

a better path to approach the target, therefore, the MSS is reduced to some

extent.

However, the SR does not exhibit any obvious trends. After repeated

observation and analysis of the failed searching process, we find that the

failure often occurs when the source is located near the edge of the entail
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scene. In that circumstances, the searcher may be too far from the source

to gather enough information to make the estimation converge. In the worst

case, samples of particle filter cluster in several areas of the scene causing

the searcher to wander in those areas constantly while the source does not

exist in any of those areas. These problems can be solved by increasing the

sensing range.

The results in Table 2 demonstrate the robustness of the APMA algorithm

to the sensing range. In other words, our algorithm can guide various types of

searchers with di↵erent sensing ranges. The searcher with the sensing range

R = 1 can also obtain good searching performance.

5.3.2. The number of Gaussian distributions K

The APMA algorithm proposed in this paper uses a Gaussian Mixture

Model to fit the samples of particle filtering to obtain the mean point of the

MEGI, which is also the target in path planning. There are two important

parameters in the Gaussian mixture model that determine the fitting results:

the number of Gaussian distributions K and the covariance of samples ⌃.

The covariance of samples can be calculated based on the data of samples,

while the K needs to be determined artificially. Therefore, the e↵ect of

the variation of the K on the performance of the proposed algorithm is

investigated in this section.

The experimental results are shown in Table 3. When K = 2, the MSS

for di↵erent types of maps is above 70, which is significantly di↵erent from

the experimental results when K takes other values. When K = 3, 4, 5,

the algorithm achieves a similar level of performance. In the Gaussian mix-

ture model, increasing the number of Gaussian distributions will increase the
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Table 3: PERFORMANCE COMPARISON OF DIFFERENT K IN APMA (K = 2 : 1 : 5)
ACROSS THE FIVE DIFFERENT TYPES OF SCENES (P0 = 0.15 : 0.05 : 0.35) IN
EACH 100 DIFFERENT MAPS FOR TEN TIMES.

K 2 3 4 5
SR

P0 = 0.35 98.5% 98.8% 99.2% 99.3%
P0 = 0.30 99.2% 99.4% 99.6% 99.3%
P0 = 0.25 98.9% 99.4% 99.4% 99.7%
P0 = 0.20 98.2% 99.4% 99.5% 99.6%
P0 = 0.15 99.0% 99.9% 99.4% 99.7%

MSS
P0 = 0.35 77.05±64.23 68.66±51.52 67.42±46.93 69.32±52.09
P0 = 0.30 74.70±60.96 65.37±47.04 66.16±47.53 64.91±45.80
P0 = 0.25 77.72±66.05 62.59±45.82 64.49±44.86 62.22±44.54
P0 = 0.20 82.00±67.05 63.90±45.97 65.61±45.87 65.12±44.31
P0 = 0.15 74.10±68.63 57.22±41.25 56.64±40.10 57.10±40.81

complexity of the calculation. From the experimental results in this section,

when the value of K is taken above 3, increasing the value of K does not

significantly improve the success rate and reduce the MSS. Therefore, un-

der the condition of guaranteeing the source finding e↵ect, the number of

Gaussian distributions is determined as K = 3 to reduce the computational

complexity.

5.3.3. Resampling threshold ⌘

In the searching process, the target point extracted from the estimation

may be far from the real source location since the searcher has not collected

enough information. In this situation, the inaccurate estimation may not be

adjusted if the searcher continues to move to the target with bias. Thus, the

searcher needs to perform exploration to obtain more information to adjust

the inaccurate estimation. When the target point is close to the real source
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location, the searcher needs to execute the planned path to arrive at the

target, which is called exploitation. Therefore, how to balance exploration

and exploitation during the searching process is a problem that needs to be

solved.

In the resampling process of particle filter, the change of the resampling

threshold coe�cient ⌘ will cause the information required for the change of

particle distribution to change. That is, the size of the resampling threshold

coe�cient ⌘ determines the number of exploration steps required to update

the current estimate. A smaller ⌘ tends to favor the searcher to develop the

current estimate of the source location with fewer explorations, and a larger

⌘ tends to favor the searcher to explore more to be more accurate the next

time it is developed. In this section, we conduct numerical experiments by

varying the size of this parameter, and the results are presented in Table 4.

Table 4: PERFORMANCE COMPARISON OF DIFFERENT ⌘ IN APMA ACROSS
THE FIVE DIFFERENT TYPES OF SCENES (P0 = 0.15 : 0.05 : 0.35) IN EACH 100
DIFFERENT MAPS FOR TEN TIMES.

⌘ 0.4 0.6 0.8 0.9 0.95 1
SR

Po = 0.35 55.5% 60.0% 88.9% 98.8% 98.8% 99.8%
Po = 0.30 58.0% 61.8% 87.8% 99.1% 99.4% 99.1%
Po = 0.25 50.2% 55.8% 86.2% 99.0% 99.4% 99.8%
Po = 0.20 48.6% 53.2% 87.3% 99.3% 99.4% 99.6%
Po = 0.15 49.1% 57.6% 89.3% 99.3% 99.9% 99.5%

MSS
Po = 0.35 119.89±107.87 89.06±86.55 84.36±88.32 72.42±58.12 68.66±51.52 80.93±68.46
Po = 0.30 119.34±110.51 98.68±86.58 97.98±88.36 69.02±56.11 65.37±47.04 80.88±71.12
Po = 0.25 118.42±102.15 92.87±85.49 91.39±95.50 66.48±56.12 62.59±45.82 78.88 ±68.78
Po = 0.20 115.16±108.42 95.49±87.54 90.64±80.87 68.43±64.27 63.90±45.97 74.92±63.50
Po = 0.15 122.59±111.95 87.70±92.30 89.88±85.87 64.87±59.97 57.22±41.25 65.28±61.13

The experimental results show that the SR is low when the value of ⌘

is small, and more MSS are required to complete the source searching task.
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As the value of ⌘ increases, the APMA algorithm becomes more and more

e↵ective. When ⌘ = 0.95, the performance of the algorithm reaches its

peak. Raising the value of ⌘ after that will instead cause the searcher to

consume more MSS while searching. The analysis results show that when

⌘ is small, the searcher tends to exploit, and less exploration leads to its

inability to correctly estimate the location of the source, which eventually

leads to the failure of the source searching task. When the value of ⌘ is larger,

the searcher tends to explore. More exploration will improve the accuracy

of source location estimation and increase the success rate of source search,

but the reduction of exploitation will instead increase the number of source

search steps. Therefore, the source search framework in this paper needs to

balance the searcher’s tendency to explore and exploit to find the optimal

strategy parameters. The result shows that the source search performs best

when ⌘ = 0.95, which is ⌘ reflection of the balance between exploration and

exploitation.

5.4. Validation experiment with CFD

In the previous experiments, we compared the e↵ectiveness of the APMA

algorithm with baselines in unknown obstructed scenes and explored the per-

formance of the algorithm of di↵erent parameters. The concentration fields in

these experiments are generated by the convective di↵usion equation model

in Section 2.1.2. This model is commonly used for theoretical exploration

and is widely used in the field of source searching. However, it cannot reflect

the e↵ect of obstacles in the scene on gas di↵usion. In this section, we will

use the Computational Fluid Dynamics (CFD) model to generate a realis-

tic concentration field to test the applicability of the algorithm. Similar to
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previous works [49, 50, 51], we use the GAMBIT to generate and mesh an

indoor scene shown in Fig. 6 (a) and get the predicted concentration data

from the FLUENT which will replace the data from the convective di↵usion

equation model for the experiment.

Taken Path

Occupied Grid

Occupied Grids
(Affecting Dispersion)

Searcher

Initial Location

Free Grids

(a) (b)

Figure 6: Validation experiment with CFD in an indoor scene. (a) An indoor scene; (b)
the searching trajectory upon the di↵usion field.

The di↵usion field generated by FLUENT is shown in Fig. 6 (b). The

wall in the indoor scene denoted by white grids can a↵ect the di↵usion of

gas. The obstacles represented by black grids are assumed to have no e↵ect

on the di↵usion but can block the movement of the searcher. The grids are

marked as occupied grids when there are obstacles or part of obstacles in

them. A steady wind blows from the window on the below boundary and the

windows on the rest three boundaries are set pressure outlets. The source

constantly releases hydrogen-sulfide (H2S) into the environment. The higher

concentration of H2S is shown as brighter, and the red represents the highest

concentration, whose location coincides with the source.

The simulation experiment based on the CFD model is conducted 100
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Table 5: PERFORMANCE COMPARISON OF DIFFERENT SEARCHING METHODS
IN DIFFUSION ENVIRONMENTS GENERATED BY FLUENT.

Entrotaxis IWFA EWFA APMA
SR 43% 99% 86% 100%
MSS 180.07±72.57 96.43±51.24 146.27±87.24 79.75±54.35

times. In each run, the searcher is launched at the same position. We

compare our method with the Entrotaxis, IWFA and EWFA algorithm in

this experiment. The results are provided in Table 5. The AMPA algo-

rithm still maintains a high success rate in the more practical environments

generated by FLUENT, and it shows a considerable superiority in both SR

and MST. Finally, the results demonstrate the e↵ectiveness of the proposed

source searching framework in unknown obstructed environments.

6. Conclusions and future work

The active source searching framework is proposed to provide a generic

solution for the source searching problem in unknown obstructed environ-

ments (e.g. indoor environments) with limited sensing abilities. We em-

ployed the occupancy grid map to represent the source searching scenarios

and introduce the environment and sensor models to describe the statement

of the source searching problem. Based on the models, the framework in-

tegrates source estimation, target determination and path planning. Source

estimation translates sensing information into the probability information of

the source location. Target determination provides a searching target by

extracting the features of the probability information. Path planning intro-

duces the heuristic idea with a path planning algorithm to plan the path
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navigating to the target in the partially known obstructed regions. To put

the framework into practice, the APMA algorithm is presented based on Par-

ticle filter, MEGI-taxis and A-star. In extensive experiments, our proposed

APMA algorithm outperforms the baseline algorithms both in the success

rate and mean searching steps. To further explore the characteristics of the

APMA algorithm, sensing range, number of sub-distributions and resam-

pling threshold are varied to examine their influence on the performance of

the APMA algorithm. Finally, we also validated the performance of the

APMA algorithm in a more realistic scenario generated by the CFD model.

This work can further be extended in many aspects. Firstly, the MSS of

the APMA algorithm in the scene of P0 = 0.15 is higher than that of the

baselines. In simple scenes, few obstacles block the searcher’s movement, in-

dicating that we need other mechanisms to accelerate the decision and path

planning process in this condition. Meanwhile, the planned path is shorter

in simple scenes, resulting in less information collected on the way to the tar-

get. To improve the algorithm, we could adjust the exploration-exploitation

balance according to the complexity of the scene. In addition, multiple sub-

distributions are obtained by the Gaussian Mixture Model (GMM) after fit-

ting the samples of the particle filter. The mean point of the MEGI is deter-

mined as the searching target. However, the estimation information of other

sub-distributions is wasted. In future work, we could improve the APMA al-

gorithm by making use of the estimation information of all sub-distributions.

Also, the GMM could be introduced to solve the multiple sources searching

problem in indoor environments. Moreover, we will deploy the proposed

framework and algorithms on real robots and verify their e↵ectiveness with
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real-world experiments.
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