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Abstract

Up-to-date listings of retail stores and related building functions are
challenging and costly to maintain. We introduce a novel method for
automatically detecting, geo-locating, and classifying retail stores
and related commercial functions, on the basis of storefronts ex-
tracted from street-level imagery. Specifically, we present a deep
learning approach that takes storefronts from street-level imagery
as input, and directly provides the geo-location and type of commer-
cial function as output. Our method showed a recall of 89.05% and
a precision of 88.22% on a real-world dataset of street-level images,
which experimentally demonstrated that our approach achieves
human-level accuracy while having a remarkable run-time effi-
ciency compared to methods such as Faster Region-Convolutional
Neural Networks (Faster R-CNN) and Single Shot Detector (SSD).
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1 Introduction

Commercial facilities are integral to cities worldwide. Listings of
these facilities are used in mapping and location services, recom-
mendation systems, search engines, and social media platforms. For
these systems to provide accurate and reliable information to the
users, it is important that such listings are kept up to date. One
of the most challenging issues in this regard is keeping track of
the frequent changes that characterize this type of businesses (e.g.
a candy shop turning into a bakery).! It is estimated that 10% of
establishments go out of business every year, and in some market
segments (e.g. restaurants), the rate is as high as 30% [31].

!Examples, the business-related place types taxonomy, code and dataset are available
on the companion page: https://sites.google.com/view/storefrontsmapping
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The traditional way of keeping such listings up to date requires
lots of manual work and often also entails the integration of sev-
eral third-party resources (e.g. data from the local chamber of
commerce). An opportunity to complement these conventional
approaches arises from the recent advent of street-level images,
available on a variety of platforms (e.g. Google Street View or Map-
illary). These frequently updated panoramic views of the urban
environment allow to retrieve pictures of the storefronts at large
scale. We argue that the information included in the storefronts
(e.g. commercial logos, names, text etc.) could help identify the type
of business establishment. Recent studies have used street-level
imagery in analyzing various aspects of the urban environment
[1, 4, 11, 47], and in automatically detecting urban objects [1, 33].

In automatically detecting, mapping, and classifying commercial
functions from street-level imagery, the most challenging aspects
are: (1) the high degree of visual variability that characterizes store-
fronts, and that hinders the achievable accuracy and generalizability
of prediction models; (2) image acquisition factors such as noise,
motion blur, occlusions, lighting variations, specular reflections,
perspective, and geo-location errors; and (3) the need for methods
with good runtime execution performance, given the continuous
changes and the large number of businesses in a city.

This paper presents a multi-modal late-fusion method that com-
bines visual and textual cues in street-level images, and is able to
resolve semantic ambiguities and incorrect digitization of detected
textual labels. This method detects the physical extent of storefronts,
identifies their corresponding commercial function, and approxi-
mates their geo-location. Thanks to this late-fusion approach, the
recognition module can easily be configured to work on different
datasets (e.g. storefronts from different countries) with improved
modularity and minimal visual model re-training.

We compare our approach with two state-of-the-art methods,
Faster R-CNN [37] and SSD [23], which have shown superior per-
formance in several object detection challenges [22, 28]. Results
show that, while having higher precision than Faster R-CNN (2%)
and SSD (9%), our approach is considerably faster than the baselines
(up to 60%). Furthermore, we show that our proposed classification
method is able to outperform state-of-the-art computer vision ap-
proaches for POI classification — Places365-CNNs [45] — by 16.86%,
and multimodal approaches — Karaoglu et al. [14] by 6.8%. Finally,
we ran a crowd-sourcing campaign on Amazon Mechanical Turk,
and show that our proposed approach achieves almost the same
precision and recall as a human annotator, on detecting and clas-
sifying retail storefronts. We also investigate the performance of
our method in a number of edge cases, to highlight limitations and
suggest future directions of improvement.
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2 RELATED WORK

In this section we discuss related work on knowledge extraction
using street-level imagery and fine-grained scene classification.

Knowledge Extraction using Street-level Imagery. Street-level
imagery can be a useful data source to extract knowledge about
the urban environment [33], especially for tasks requiring high
spatial coverage. Recent work shows the feasibility of utilizing
street-level imagery in assessing structural changes in urban areas
[1], inferring subjective properties of urban areas such as safety,
liveliness, and attractiveness [8], mapping urban greenery [18-20],
geo-locating high-density urban objects [33], or estimating city-
level travel patterns [11]. Other works applied computer vision
techniques to Google Street View images for inferring the socioeco-
nomic attributes of neighbourhood in US [9], finding morphological
characteristics to distinguish European cities [7], detection of build-
ing entrance in outdoor scenes [40], or detection and classification
of traffic signs [3]. Yu et. al. [43] addresses the problem of detect-
ing storefronts using street-level imagery. The authors trained a
deep learning model on a proprietary dataset (~ 2M annotated
images), however, without addressing the issue of classification
into business-related categories. To the best of our knowledge, our
work is the first to address the problem of storefront detection,
classification, and geo-localization in an integrated fashion.
Fine-grained scene recognition. Alternatively, scene Deep Con-
volutional Neural Networks (CNNs) have been successful in various
scene recognition tasks. However, such breakthroughs in scene
recognition do not imply that these models are suitable for fine-
grained classification of storefronts based on their visual appear-
ance. This is due to the high degree of intra-class and the low degree
of inter-class differences in the appearance of store fronts across
business categories [14]. Yan et al. [42] take Spatial Context (i.e.
nearby places) into account as complementary information to boost
the performance of CNN models for classifying business places. In
addition, fine-grained classification based on textual components
(i.e. signs, logos etc.) could play an important role in making more
accurate predictions [27]. Along these lines, Karaoglu et al. [15]
propose a multimodal approach that combines visual features and
textual information from imagery into a single feature space as
input for a SVM classifier. Our work differs in that we incorporate
a multimodal late fusion approach proposed by [29], together with
storefront object detection, localization and aggregation algorithms
based on street-level imagery, to create an integrated framework
for detecting, classifying, and mapping storefronts.

3 Method

Our model consists of three main modules Figure 1. The store-
front detector extracts the physical extent of retail storefronts from
street-level imagery. As there is often more than one storefront in
street-level imagery, the detector module outputs a list of bounding
boxes. Then detected bounding boxes are iteratively fed into both
classification and geo-location estimation modules. The classification
module utilizes the bounding box information to crop the original
input image, and outputs a probability distribution over candidate
classes (business types). The geo-location estimation module calcu-
lates the actual latitude and longitude of each detected bounding
box by using the metadata of street-level imagery.

Shahin Sharifi Noorian, Sihang Qiu, Achilleas Psyllidis, Alessandro Bozzon and Geert-Jan Houben

3.1 Storefront Detection

For fast storefront detection, we rely on the YOLOv3 [36] one-stage
object detector. While not being the most accurate object detection
algorithm, YOLOV3 suits our requirements as it is a very suitable
choice for near real-time detection.

Training. We manually annotated the storefronts in 1200 street-
level images. The images were randomly collected from 5 different
countries using Google Street View. We divide the dataset into
three parts: training (~ 1000images), validation (~ 100images), and
test (~ 100 images). We also augment the labeled training data by
adding Gaussian noise, varying Brightness, and randomly Rotating
image, which results in 1000 X 5 = 5000 images in the training
set. Due to scarcity of well-annotated data for business storefront
detection, as previous studies suggested [30, 41], we use a Transfer
Learning strategy in order to improve the quality of our detector.
As the designer of YOLO has already pre-trained the network using
the Openlmages dataset to extract features [17], we immediately
applied the pre-trained weight values for further training.

Due to the visual ambiguity of the storefronts that are too far
from the image acquisition device, we remove from the original
YOLOV3 architecture the 12 layers that are responsible for detect-
ing very small objects, also obtaining a decrease in the training
and inference time of ~ 10010%. Details on the neural network
architecture are provided on the companion page.

The input training images are resized to 416 X 416, and the

network has been trained for 5,000 iterations with batch size of
64. At the end of the training, the loss converges to less than 0.04
on the validation set. As Georgakopoulos et al. [10] suggested, at
a general improvement for training process, we initially set the
learning rate to 0.001 for the first 3,000 iterations as we are starting
with zero information and so the learning rate needs to be high.
After 3,000 iterations, we decrease the learning rate to few steps by
a factor of 0.1. The YOLO network predicts bounding boxes using
dimension clusters, called anchor boxes [35]. We calculated anchor
boxes for our storefront dataset using the k-Means algorithm and
adapted in our output layers.
Inference. At the inference stage, the final output is delivered in
shape of a storefront box, paired with its corresponding confidence
score. Given a 416 X 416 image, our storefront detector outputs
(13 X 13 + 26 X 26) X 3 = 2,535 bounding boxes. Boxes are filtered
on their objectness score, i.e. how likely the box contains an object
[36]. Boxes having scores below a threshold are eliminated. Further-
more, we perform Soft Non-maximum Suppression [5] to eliminate
redundant overlapping boxes with lower confidences.

3.2 Storefront Classification

The information contained in street-level imagery is essentially
visual. Therefore, storefronts can be described based on morpho-
logical characteristics (e.g. height, color, materials, geometry) of
their facades. Common features which are often found on business-
related storefronts, are signs or visual labels. These contain the
name, logo, and other related information that help people iden-
tify businesses while navigating through physical space. Therefore,
they could be a valuable source of information to classify retail
storefronts. Due to the fact that both visual and textual features are
important cues, we propose a multi-modal approach.
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Figure 1: The architecture of our end-to-end model

Morphological Classification. The single-pass object detectors
such as YOLO are capable of detecting and classifying objects si-
multaneously. Due to the high intra-class visual variability (e.g.
Italian restaurant and Japanese restaurant) and the small inter-class
visual differences (e.g. Bakery and Pizzeria), these models require a
large training set containing fine-grained labels assigned to each
bounding box. However, collecting such a training set can be very
expensive. To address this issue, we separated the visual-based
identification of storefront types and formulated it as a scene clas-
sification problem. There are several CNN models available for
scene classification tasks. As the model selection and comparison
are not the focus of our study, we simply employed the Residual
Network (ResNet) in our framework, which has shown superior per-
formance on ImageNet classification [12]. We use the pre-trained
ResNet152-places365 model provided by [45], which outputs 365
scene classes, including some (e.g. c1iff or coral) that do not qual-
ify as POI type (e.g. restaurant) and, therefore, are not relevant in
our setting. Without losing generality, we select 24 business-related
place types as our candidate class labels. The list of business-related
place types is available on the companion page.Then, we fine-tune
the pre-trained ResNet152-places365 with a 24-way softmax clas-
sifier on the subset of the Places dataset. The last fully-connected
layer of the pre-trained network was removed and replaced by a new
fully-connected layer with 24 nodes to solve the storefront type clas-
sification problem. Then, the weights of the added fully-connected
layers were randomly generated from a Gaussian distribution with
zero mean and standard deviation of 0.01.

Signage-based Classification. The first step to identify the store-
front type by its signage is to localize and crop textual information
in the image in the form of word boxes. However, Scene-text detec-
tion is not a trivial task as scene texts have different sizes, width-
height aspect ratios, font styles, lighting, perspective distortion, and
orientation. There are many scene-text detection methods. As the
goal of this work is not to compare different methods/models, we
utilize one of the state-of-the-art methods, called CRAFT [2]. The
CRAFT model utilizes a convolutional neural network which makes
prediction on the character region score and character affinity score.
The region score is then used for localization of individual charac-
ters on an image, and the affinity score is employed to group each
character for constructing a single word instance. We benchmarked
the CRAFT model on the UBER-Text dataset [44]. It outperforms
other state-of-the-art methods such as TEXTBOX++ [21] by 5%,
and EAST [46] by 6.5%. We employed the weight values which are
pre-trained on the IC15 dataset [16].

As done with text localization on images, we need to transcribe
extracted word (containing rotated, scaled and stretched characters)

images into machine-readable character sequences. To this end, we
integrate a multi-object rectified attention network (MORAN), pro-
posed by [25], as in several testing rounds MORAN outperformed
other state-of-the-art methods on the UBER-Text dataset [44].

Next, we integrate a semantic matching approach to predict
the type of storefront based on the semantic distance between the
words extracted from the image and the standard name of each
candidate storefront type, as defined in ImageNet synset.?

However, some words in street-level imagery may have high sim-
ilarity with one of the candidate classes, others may be completely
irrelevant. For instance, words such as hair, nail or beauty on
storefront images are likely to be related to a Beauty Salon. On
the contrary, OPEN/CLOSE signs do not give any information about
the type of storefront, which need to be discarded. We therefore
remove common - yet irrelevant — words, including verbs like open,
close, push, pull, etc. using an extended version of the standard
stopword list. After reducing potential noise, the recognized word
is transformed into a word vector representation. While there can
be many implementations for capturing semantic relatedness[24],
previous studies have shown that word embeddings [26, 32] perform
this task particularly well by measuring the cosine similarity of
the word embedding vectors. We employ FastText [6] to transform
recognized texts into a word vector representation due to its promis-
ing performance in overcoming the problem of out-of-vocabulary
words, by representing each word as a bag of character n-grams.

As our evaluation will focus on the Manhattan Borough of New
York City, the pre-trained (on Common Crawl and Wikipedia 3)
word vectors for English are used. According to the desired lan-
guage [, the corresponding pre-trained word vector V] is selected,;
then, each recognized word is represented by the pre-trained 300-
dimensional word vector as v;. Finally, we use the method proposed
by [39] to align the V; in the same space as the English word vec-
tor for multilingual semantic matching. Similarly, each candidate
class of storefront type C is represented by a word vector c; with
an English word embedding as reference. Then, we calculate the
cosine similarity between each class label (c;) and each spotted text
(v;) as follows: T

cos (@ij) = )

(1)

loi [e;]
The probability score P; for each candidate storefront type (j) is

calculated by averaging similarity scores of all spotted words:

YK, cos (©4)

= @

P =

http://www.image-net.org/synset
Shttps://fasttext.cc/docs/en/crawl-vectors.html
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wherei = 1,2,..., K is the index of each spotted text, j = 1,2, .., N
is the index of each probability score, and N is the number of
candidate classes.

Then, we utilize a softmax function to normalize the probabil-
ity scores P; so that, similar to the morphological classifier, the
probability scores of signage-based classifier sum up to 1.

Late Fusion. We use a Linear Bimodal Fusion (LBF) method (here
essentially a 2-component convex combination), which linearly
combines the ranking scores provided by the CNN model and the
semantic similarity scores from the scene-text semantic recognition
module, as shown in Equation 3.

Smixed(d) = wyp.Sy(d) + w;.S¢(d) (3

where S,,ixed> So(d) , and Sy (d) refer to the final ranking score,
visual recognition score, and semantic similarity score for store-
front type d respectively, w, and w; are the weights for the scene
recognition component and scene-text extraction component, and
wy + w; = 1. The weights are determined according to the relative
performance of the individual components. Specifically, the weight
for the scene recognition module is determined as:

accy

Wy = ———— 4)
accy + accy

where acc, and acc; are the measured top@1 accuracy of mor-
phological classifier and signage-based classifier on a manually
labeled test set, respectively.

3.3 Geo-location Estimation and Aggregation

To geo-locate the storefronts we propose a storefront geo-location
estimation algorithm working on the street-level images metadata.
In previous work [33] the geo-location of an urban object is calcu-
lated using the intersection of the central line (symmetry line) of
the bounding box and the ground-level horizontal plane (i.e. city
ground). We adapt [33] by relying on third-party information about
existing buildings, and then finding which building facade has an
intersection with the given bounding box and then calculating the
geo-location of the intersection.

We acquire the data of all the building facades in a city from
OpenStreetMap (OSM).# The map from OSM is composed by nodes
and ways, i.e. points and segments. We extract all the segments
having the attribute “building” into a set noted as S, representing
the collection of all the building facades.

Ray of the bounding box r ———

Estimated location of the store 1z ——
The closest ir segment §

Location of the camera 1, ——— 4

Figure 2: Estimation of a storefront’s location.

“https://www.openstreetmap.org/
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To estimate the geo-location of the storefront (Figure 2), we trace
a ray starting from the location of the camera I and going with
the heading of the bounding box h, where I can be immediately
acquired from the metadata of the street-level image and h can be
easily calculated according to the position of the bounding box on
the image [33]. All the segments (facades) close (not farther than R
meters) to the camera location I are selected into a set S¢ (S¢ C S).
Then, we check if a segment s (s € S¢) has an intersection with the
ray. If the intersection is exists, the distance d.s from the camera
I to the intersection is is calculated and recorded. The segment
with the minimum d, is the facade § having the targeted storefront.
The location of the corresponding intersection i; is the estimated
geo-location of the storefront.

The same storefront might be annotated multiple times from
different street-level images or different crowd workers via either
an automatic detection method or crowdsourcing. Therefore, “raw”
annotations (bounding boxes with labels) produced by automatic
detection or crowdsourcing are aggregated to acquire a single esti-
mated annotation for each storefront. We adopt the density-based
location aggregation algorithm proposed by [38], which produces
one single estimated geo-location from multiple annotations for
each storefront. Based on this, the label with the highest confidence
score from candidate annotations is selected as storefront type.

4 Evaluation

In this section, we first describe how datasets are prepared. Then,
we separately compare the performance of our detection and clas-
sification methods (Shown in Figure 1) with: 1) State-of-the-art
approaches; and 2) Human annotators. Finally, we comment on the
results of the model (detection, classification, and geo-localization).

4.1 Implementation Details

All the training and experiments are conducted on a NVIDIA Tesla
K80 GPU. Our method is not trained in an end-to-end manner. The
object detection method is trained using Darknet framework[34]
due to its compatibility with the YOLO architecture. To train the
other components of our system as well as fine-tuning compared
baselines, we use Tensorflow as training platform. We perform all
experiments using OpenCV, which provides a generic inference
module for various type of Deep Learning models.

4.2 Dataset

We manually annotated 100 street-level images as test set for store-
front object detection. The dataset comprises 317 storefront bound-
ing boxes (~ 3.2 boxes per image). We refer to this dataset as
Store-Obj. We also collected a set of single storefront images, which
are manually classified into 24 categories.The list of categories com-
prises 24 top business types, which are ranked based on their occur-
rence in the popular business listings such as Yelp > or Foursquare®.
We name this dataset as Store-Scene. All images in Store-Scene only
contain single store, while Store-Obj comprises complex panorama
images including more than one storefront, and many more irrel-
evant urban objects. Ultimately, we created a small benchmark

Shttps://www.yelp.com/
®https://foursquare.com/
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dataset in Manhattan, New York City. We selected a street of about
three kilometers long and iteratively collected 150 panoramic im-
ages along the street using Google StreetView APIL Then, we man-
ually verified that ~ 120 unique businesses exist in the vicinity of
the street mentioned above using Google Places API’. We observed
that the type of collected businesses corresponds to 18 categories of
Store-Scene and other 6 business categories do not exist in the area
of our experiment. This dataset is used for evaluating the entire
pipeline of our model (detection, classification, and geo-localization)
in comparison to human performance, as well as for qualitative
analysis. We refer to this dataset as Store-location. The properties
of each dataset are described in Table 1.

Table 1: Dataset statistics: D = Detection, C = Classification,
G = Geo-localization

Dataset Problem #Categories Training Validation Testing
Store-Obj D 1 1,000 100 100
Store-Scene C 24 - - 1,100
Store-Location D,C,G 18 - - 150

Table 2: Results of our store-front detector method and the
state-of-the-art methods with regard to recall (%), precision
(%), F1 score, mean average precision over 0.5 IoU threshold
(%), and inference time per image (ms).

Method Recall Precision F1score mAP@0.50 Infer.time
SSD 68.29 72.35 70.26 74.3 220
Faster R-CNN 77.03 79.33 78.16 78.9 325
Ours (yolo-storefront-416) 74 81 77 79.37 100
Ours (yolo-storefront-608)*  89.05 88.22 88 91.35 175

+ The second variation of our model is presented to show the impact of input size.

Table 3: Results of our storefront classification method and
the state-of-the-art methods with regard to top@1 accuracy
(%), top@5 accuracy (%), and inference time per image (ms).

Dataset Method Top@1acc. Top@5 acc. Infer. time
GoogLeNet-places365 21.45 55.42 95

Store-Scene ResNet152-places365 28.15 59.45 125
Karaoglu et al. [14] 38.17 69.56 110
Ours (textual-only) 42.55 80.44 190
Ours (visual + textual) 45.01 89.44 205

4.3 Comparison with Object Detectors

We compare our proposed store-front detection approach with
Faster R-CNN[37] and Single Shot Detector[23], and measure preci-
sion, recall, F-score, mean average precision over 0.5 IoU threshold,
and average inference time per image. Both of the baseline methods
have shown superior performance in many general object detection
challenges[13]. Therefore, these method are suitable for evaluat-
ing our object detection approach. We first fine-tune both baseline
methods using the training set of Store-Obj dataset. All training
images, used for tuning baselines methods, are resized to (416 x416).
Then, we perform experiments using Store-Obj test set. As shown in
Table 3, our detection approach outperforms both baseline methods
in precision (~+2% & ~+9%) and mAP@0.5 (~+0.5% & ~+5%). In
terms of recall, Faster R-CNN performs better, but it has higher

"https://cloud.google.com/maps-platform/places/
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inference time (~+300%) comparing to our method. In addition,
we present second variation our model with a larger input sizes
(608 x 608). Increasing input size improves precision and recall by
~+7.8% and ~+15%, respectively. However, the average inference
time also increases by 75%.

4.4 Comparison with Scene Classifiers

We formulate the identification of store-front type as a fine-grained
scene classification problem. We compare the performance of our
approach with two visual-only scene recognition baselines on the
Store-Scene dataset described in Table 1. We fine-tuned both base-
line methods in the same way as explained in the Section 3.2. This
comparison aims at showing the benefit of leveraging textual infor-
mation from imagery. As shown in Table 3, our scene classification
approach outperforms both visual-only baselines. Results suggest
that by considering textual information visible on the outdoor ap-
pearance of storefronts, it is possible to achieve high performance
also with limited training data.

We also compare the performance of the our classification ap-
proach with Karaoglu et al.[14], the best performing state-of-the-art
method that addresses the problem of business type classification
by leveraging textual information from images. The CNN models,
used in this method for visual feature detection, are fine-tuned in
the same way as our morphological classifer. Our proposed clas-
sification approach outperforms the state-of-the-art top@1 from
38.17% to 45.01% (~+6.8%) on the Store-Scene dataset; and improves
the Top@5 accuracy from 69.5% to 89.4% (~+20%).

4.5 Comparison with Human Annotators

To further assess our model, we also conducted a crowdsourcing
experiment through Amazon Mechanical Turk®. In the crowdsourc-
ing task, workers are asked to draw a bounding box around every
visible storefront on the image, and then, choosing its correspond-
ing category from a given list of 24 business types (Described in
Section 4.2). We also added an OTHER category which stands for
unknown or not-in-the-list situations. Each image is annotated by
at least three unique human annotators. By tracking workerId, the
back-end system running on our server ensures that each worker
submits at most three tasks to avoid biases due to over-repeated
participation.

We published 645 HITs and 318 unique workers executed our
tasks. We manually check all the HITs and exclude invalid assess-
ments. The aggregated geo-location of annotations, made by crowd
workers, are estimated based on the method explained in Section
3.3. We run our model on the Store-Location dataset, the same set
of street-level images (resolution: 2000 X 640) as used in the crowd-
sourcing experiment. Then, we removed duplicate geo-locations
from the list of the detections resulting in 97 unique businesses.
Each storefront bounding box B predicted by our model, is consid-
ered as True Positive, if there are at least two bounding boxes B,
obtained from crowd-sourcing task, where IoU (Intersection over
Union) between B and B is greater than 0.5. When B is confirmed as
True Positive, we compare the result of our storefront classifier with
the human categorization. Given L is a set of labels, which are as-
signed to a storefront bounding box by at least 3 human annotators.

8https://www.mturk.com/
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Figure 3: Example applications of our detection, classification, and mapping method.

The predicted set of labels L are sorted by classifier’s confidence.
Then, we define the top k prediction set L as the first k elements
in L, where k € {1,5}. The prediction of business category L is
confirmed as True Positive, if one label of L. is agreed by at least
two human annotators, represented by L. If the best confidence
score of top-k predictions is below 0.4, the label is considered as
unknown, which is represented by OTHER on the list of business
categories. As depicted in Table 4, our automatic method achieved
83.2% precision on detecting storefronts: it got 39 false positives
out of the 232 detections. Then, we manually removed duplicate
geo-locations from the list of the detections resulting in 60 unique
businesses. It means a 61.9% recall at 83.2% precision:60 out of 97
businesses visible on Street View imagery were correctly detected.

Table 4: Comparison to human assessment.

Detection Classification Geo-location Estimation
Precision ‘ Recall || Top@1 acc. ‘ Top@5 acc. || Precision ‘ Recall
Ours (end-to-end) || 83.2% | 61.9% 69.1% | 925% 8318 | 6185

4.6 Qualitative Analysis

We discuss examples of real world scenarios, where the proposed ap-
proach provides correct and incorrect predictions on Store-Location.
Figure 3 shows that our model is able to correctly detect (~89%),
classify (~78%), and geo-locate (~89%) business-related storefronts,
which are visible in the street-level images. In this example, the
storefront (i) is predicted correctly, even when there is no word
having direct relation to their types (e.g. beautysalon); the proposed
semantic matching approach is able to infer that texts such as Hair
or Nail, are semantically close to beauty salon in the word vector
space, thus enabling correct classification.

A limitation of our system is the difficulty to identify the correct
extent of storefronts that are divided into different parts. As Figure
3 shows, the storefronts f and g are detected separately, however,
those bounding boxes belong to the same storefront. As discussed
in Section 3.2, due to high degree of visual variability, it can be very

challenging (if not impossible) to correctly classify the business
type of storefronts only based on the visual features. Storefronts (c)
and (d) are classified as Bank, while the correct labels are Optician
and Bar, respectively. The error for storefront (d) is accountable
to the ATM machine sign on the facade, which is the only textual
feature, our model is able to extract from the image. As the word
’ATM’ usually appear in the same context as ‘Bank’ in text corpus,
our word-vector based semantic-matching method made a wrong
prediction with a very high confidence. These failures show an
obvious limitation of our method, i.e. that the textual feature might
be sometimes misleading, which impacts the overall performance
of the proposed approach. Without textual information, the system
simply relies on visual features.

5 Conclusion

We introduced a novel approach to detect, classify and geo-locate
retail storefronts using street-level imagery. Our approach is able
to detect the physical extent of storefronts boundaries even when
well-annotated training data is limited. The multi-modal storefront
classifier predicts business categories near human-level accuracy
by measuring the semantic similarity between detected textual
information and the candidate business categories, in addition to
morphological characteristics of the storefront’s view from the out-
side. The geo-location aggregation method improves the overall
performance of the system by removing false positive predictions. In
the future we plan to incorporate additional semantically-rich infor-
mation, such as contextual information and semantic-relationships
between objects, which are visible in the street-level imagery. Fur-
thermore, in order to show the scalability of our approach, we plan
to extend the scope of our experiments to other cities in non-English
speaking countries.
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