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Abstract—The development of Internet of Things (IoT) tech-
niques enables the paradigm shift in traffic data collecting. In
traditional practices of transportation system’s constructions,
traffic-related information is collected based on dedicated sensor
networks, which are not only coverage-limited but also cost-
consuming. With the enrichment of the concepts concerning
“social sensors” and “social transportation”, Sparse mobile
crowdsensing (MCS) emerges as a promising sensing paradigm
to collect data from only a few subareas by recruiting vehicles
or mobile users with portable devices and to infer the data
in unsensed subareas with acceptable errors at a low-cost
manner. However, in real-world sensing campaigns, the Sparse
MCS systems often fail to collect data from any subareas of
interest since the assumption about sufficient participants is not
always realistic. To be specific, the recruitment of participants
is often limited by interest deficiency, privacy awareness, and
distribution biases. To handle this problem, we introduce the
dedicated sensing vehicles (DSVs) e.g., drones or driverless
vehicles into traditional Sparse MCS to improve subarea coverage
and inference performance. To achieve effective collaboration
among DSVs and mobile users, we first design a crowd-aided
vehicular hybrid sensing framework, which defines the order
of task assignment for DSVs and mobile users as well as the
budget allocation. In terms of DSVs route planning, we propose
a three-step strategy, including optimal route searching, fused
route selection, and final route determination. Moreover, mobile
users are selected based on a proposed novel selection strategy.
Experimental findings on two real-world datasets validate the
effectiveness (with less inference error) of the hybrid sensing
framework and the proposed strategies, in comparison with the
user-only/DSV-only framework and five baselines. Results reveal
important implications of applying the hybrid sensing paradigm
in intelligent transportation systems to enhance data collection.

Index Terms—Social sensors, Social transportation, Sparse
mobile crowdsensing, Hybrid sensing framework, Intelligent
transportation systems

I. INTRODUCTION

BY applying the social computing approach [1], many
complex systems are managed in innovative ways. The
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traffic system is no exception, and the management mode
of which is changed to optimize different systems (e.g.,
smart parking, intelligent transit) to provide better services
(e.g., recommending parking spots, rescheduling trip plans)
by leveraging IoT-enabled sensing techniques [2]. By connect-
ing ubiquitous devices and facilities with various networks,
IoT shows promising ability to provide efficient perception
services for intelligent transportation systems (ITS). Besides
the traditional way via infrastructure-supported sensor net-
works, “social sensors” was proposed to collect traffic-related
information via social network and social media from a
humanized perspective [3]. To conclude the emerging area
in detecting traffic information from social networks, Prof.
Wang introduced “social transportation” as a new direction
for computational transportation study [4], [5].

Inspired by this promising direction, social sensing was
proposed to leverage crowds as sensors to collect data in
both physical space and cyber space with the increasingly
ubiquitous and deep sensing capacity of portable devices.
Based on the concepts of “social sensors” and “social sensing”,
mobile crowdsensing (MCS) [6] and vehicular crowdsensing
(VCS) [7] have emerged as an alternative sensing paradigm
for data collecting, which usually request a large number of
participants to execute the sensing task with a full coverage
[8], [9] or probabilistic coverage target [10]–[13] for ensuring
high-quality sensing services. However, the practical applica-
tion of such crowd sensing networks is often restricted by
the availability of participants and the required large sensing
costs. To further reduce sensing costs, current studies [14]–[17]
investigated the inherent correlations embedded in the sensing
data and proposed the Sparse MCS approaches. In this way,
the number of required samples is reduced but a predefined
data quality required by activity organizers is kept.

Though promising, Sparse MCS systems still face non-
negligible problems when dealing with real-world participants.
Most existing works assumed that enough participants in
each subarea can be recruited [18], [19] or the user mobility
can be estimated accurately [20]. However, the situation of
insufficient participants often occurs due to interest deficiency,
privacy awareness, and distribution biases [21]. Even after
considering the mobility of users, few participants can be
recruited at night or in sparsely populated rural areas [22].
Moreover, the sensors mounted in portable devices owned by
mobile users are usually low-price and low-precision. It in-
evitably incurs non-negligible sensing errors to MCS systems.
Therefore, these practical factors should be considered in the
design of Sparse MCS for ITS.

The continuous emergence of intelligent mobile devices,
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such as unmanned (aerial) vehicles and driverless cars, pro-
vides significant support for sensing the traffic contexts. Dif-
ferent from mobile users, these devices are usually equipped
with powerful onboard sensors and able to provide powerful
processing ability [23]. Therefore, it is a trend to recruit
idle IoT devices as dedicated sensing vehicles (DSVs) to
complete sensing tasks [24]. However, involving different
sensing resources in a same MCS task inevitably brings
new problems. For example, recruiting the specialized sensor-
equipped vehicles incurs extra costs. Moreover, how to utilize
various sensing and computing abilities from different sensing
resources to overcome the limitations of single-resource has
not been explored. Therefore, in this paper, we aim to address
the problem of how to effectively schedule the DSVs and
recruit suitable crowds to cooperatively complete sensing tasks
under some practical constraints with the minimum inference
errors in Sparse MCS paradigm for ITS. In the next, we would
elaborate upon the challenges of designing such a hybrid
sensing framework and shed some light on the philosophies
behind how we address them.

The first challenge is how to design a hybrid sensing
framework that fully exploits the capabilities of different
sensing resources and further reduces inference errors.
The problem is definitely NP-hard since we not only assign
tasks for mobile users, but also plan the paths for DSVs under
a total budget constraint [15], [25]. Specifically, the inherent
differences such as mobility and sensing accuracy embedded in
the two kinds of sensing entities would incur great difficulties
in task assignment. These factors inevitably influence the data
inference in the unsensed subareas.

The second challenge is how to determine the sensing
route for each DSV for contributing maximum informa-
tion. In a sensing cycle, a DSV can collect data from several
subareas along a route and may have numerous optional routes
covering different subareas under the time constraint. The data
in different subareas would incur different levels of error for
the inference of missing data [18], [26], but it is difficult to
recognize the subareas with maximum contribution in reducing
inference error. The difficulty lies in multi-DSVs synergy and
multi-factor coupling, such as the number of subareas on
routes and information provided by subareas on routes.

The third challenge is how to select proper mobile users
with the information of DSVs’ deployment. User selection is
constrained not only by the biased distribution of themselves,
but also by the deployment of DSVs. It is a wise option to
select the mobile users contributing data that is complementary
to the information gathered by DSVs. Besides, the sensing
error of users is ineluctable, and thus the difficulty also lies in
how to carefully determine the selected users to alleviate the
adverse impact of the sensing error.

To conquer these challenges, in this paper, we propose a
crowd-aided vehicular hybrid sensing framework involving
two different kinds of sensing resources, i.e., DSVs and mobile
users. Specifically, we define the order of task allocation for
the two sensing resources and design the budget allocation
method. Different from the optimized path planning algorithms
[27], [28], a three-step strategy is proposed to realize the DSVs
route planning by taking into account the solution accuracy

and searching efficiency. Moreover, mobile users are selected
based on a novel selection strategy [18]. Extensive experiments
are conducted on two real-world datasets, i.e., Flow [15] and
TaxiSpeed [29]. Results not only show the effectiveness of
our proposed framework, but also reveal the superiority of
the novel strategies proposed in our framework for reducing
the inference error over five baselines. In summary, this paper
makes the following contributions:

• To address the first challenge, we propose a crowd-aided
vehicular hybrid sensing framework to schedule sensing
tasks for DSVs and mobile users under the budget and
time constraints for each upcoming sensing cycle. To the
best of our knowledge, this is the first work investigating
the hybrid sensing framework for Sparse MCS involving
different sensing resources. In this framework, the op-
timal budget allocation is determined via experiments.
Moreover, we give the definitions of the informative
subarea and the robust subarea. Based on that, we first
plan the routes for each employed DSV; and then actively
select the potential users under the rest budget constraint.

• To address the second challenge, we define the infor-
mative subarea based on the analysis of the relation-
ship between selected subareas and the data inference
since sampling the informative subarea can bring more
information for data inference. Moreover, we propose a
three-step strategy to determine a route for each DSV.
Firstly, we find all optional routes for each DSV under
the time constraint while only the routes that cover
enough subareas are saved. Then, to contribute more
information for inference, the optional routes of multiple
DSVs are cross-fused in turn and we select fused routes
based on the Local Beam Search (LBS) method. Finally,
according to the selected fused route, we determine the
corresponding route for each DSV.

• To address the third challenge, we define the robust
subarea based on the analysis of the linear system from
the geometric view, since sampling the robust subarea can
alleviate the impact of sensing error. Then we propose
the active user selection strategy, in which the number of
users is determined under the rest budget by considering
three factors (informative subarea, robust subarea, and
the historical sampled times of a subarea). Notably, users
located in the informative and robust subareas (with few
sampled times) are preferentially selected since they are
more conducive to data inference.

The remainder of the paper is organized as follows. We first
review the related works in Section II. Then, the system model
and problem formulation are presented in Section III. Next,
we design the hybrid sensing framework in Section IV and
illustrate the experimental setup in Section V. Finally, we show
the performance evaluation in Section VI, and conclusions are
drawn in Section VII.

II. RELATED WORKS

In this section, we review the related work from three
aspects: (1) Shifts in traffic data collecting, (2) Sparse MCS,
and (3) Hybrid sensing scheme.
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A. Shifts in Traffic Data Collecting

IoT technologies play a significant and fundamental role
for traffic data collecting. With ubiquitous devices and sen-
sors embedded in IoT-enabled ITS, traffic situations can be
monitored in real time, and a vast amount of data is generated
[2], [30]. The traditional way is to monitor the traffic context
via infrastructure-supported devices. But these devices are
expensive to deploy and maintain, and their functions are
often limited due to their fixed locations. The emergence of
“social sensors” [3] and “social transportation” [5] has greatly
expanded the scope of collecting traffic data, besides from
physical sensor networks, the applications of the two concepts
can sense traffic context via social sensor networks. Social
media and social networking platforms such as Weibo and
Wechat provide ubiquitous chances for people to share ideas
and information publicly about traffic. This crowdsourcing-
based data collection paradigm provides diverse ITS services,
such as geospatial data collection, road condition monitoring,
urban traffic planning, social navigation, smart parking, and so
on [31]. Further, IoT enables the detector embedded in moving
devices, such as vehicles and mobile phones, thus provides a
complete and alternative way for data collecting. Based on
the development of ”social transportation” and the concept
of social sensing [32], leveraging both vehicles and crowds
to collect traffic data in a low-cost manner is the current
trend. Different from previous studies, we aim to unleash the
potential of different sensing resources (DSVs and mobile
users) collaboratively working in the same task to enhance
data collection for ITS.

B. Sparse MCS

To ensure quality-aware sensing services, traditional MCS
systems would recruit a large number of participants in the
target sensing areas. As a consequence, these systems cost
a lot in the task allocation process. As almost all physical
conditions monitored are continuous, sensory data generally
exhibits strong spatial-temporal correlations, thus the environ-
ment ground truth matrix often has a low-rank feature [33].
With this insight, a novel paradigm, namely Sparse MCS [34],
was systematically proposed to collect data from only a few
sensing subareas. In this way, many Sparse MCS applications
have been developed to provide innovative data collection so-
lutions in traffic systems [35], [36]. Notably, subarea selection
is a general issue in Sparse MCS. Researchers proposed an
online framework to prioritize subarea with greater uncertainty
of the sensing data [15], [19], [26], such as SPACE-TA [37].
However, the direct relationship between the uncertainty and
the quality of data inference is still unclear in this framework.
Another kind of subarea selection strategy is based on rein-
forcement learning (RL) techniques [16], [38], [39], which
achieves a global optimal quality of data inference. However,
the RL-based strategies usually need extensive training data
to obtain the weight of each subarea while the training data
may be scarce in practice. Different from the above-mentioned
frameworks, the active Sparse MCS scheme (AS-MCS) [18]
was devised based on the bipartite-graph, in which a matrix
completion algorithm was proposed to recover the unsensed

data in the presence of sensing and communication errors
robustly and accurately. Different from the aforementioned
studies, we devise a hybrid sensing framework involving two
different entities (i.e., DSVs and mobile users) for Sparse
MCS systems. Based on the work of AS-MCS, we give the
definitions of informative subarea and robust subarea, then
propose our active subarea selection strategy in this paper.

C. Hybrid Sensing Scheme

To the best of our knowledge, few studies [24], [40]–[44]
investigated the hybrid sensing scheme in the current ITS
domain. Among which, researchers in [40], [43] proposed
a hybrid task allocation framework to integrate the oppor-
tunistic and participatory sensing mode. This framework not
only recruits opportunistic users to complete sensing tasks
in their daily activities, but also assigns participatory users
to move specifically to perform tasks that are not executed
by opportunistic users. However, the participatory users in
HyTasker only refer to the users who are willing to change
their activities intentionally for tasks, thus, they are different
from DSVs that are exclusively employed for sensing tasks.
Apart from that, several works [41], [42] studied the task
allocation problem in MCS with different entities that con-
tains mobile participants and static participants (city camera,
roadside infrastructure, etc.). Wang et al. [41] proposed a
reverse auction-based method to allocate sensing tasks to two
types of participants under the budget constraint. In [42], a
framework called HySense was devised combining mobile
users with static sensor nodes to generate uniformly distributed
space-time data under the dynamic coverage constraint. As
for Vehicular Crowd Sensing applications [24], [45]–[47], the
literature [24] proposed a hybrid approach to leverage the
for-hired vehicle (FHV) and the DSV to provide fine-grained
Spatio-temporal sensing coverage. Different from the above-
mentioned studies, in this paper, the different entities (mobile
users and the DSVs) are different from previous studies, and
the hybrid sensing framework is devised for Sparse MCS for
the first time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model involving
different sensing resources. Then the active subarea selection
strategy and data inference method are introduced in brief.
Finally, we formulate the crowd-aided vehicular hybrid sensing
problem in Sparse MCS and provide a running example to
illustrate how our approach contributes to intelligent trans-
portation systems. Table I shows the main concepts and
notations used in this paper.

A. System model

The monitored area is divided into N subareas, denoted
as S ≜ {s1, s2, . . . , sN}. Meanwhile, the whole sensing
campaign is also uniformly split into T sensing cycles with
duration td, denoted as T ≜ {t1, t2, . . . , tT }. Thus, the ground
truth data of the whole monitored area over T sensing cycles
can be organized as a matrix GN×T . In each sensing cycle,
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TABLE I
MAIN NOTATIONS AND CONCEPTS

Notations Explanations
S, N The subarea set, with N subareas
T, T The sensing cycle set, with T sensing cycles
GN×T , F̂N×T The ground truth data matrix of N subareas in

T sensing cycles; and the inferred one
V The employed DSV set V ≜ {v1, v2, . . . vnv}
R The route of a DSV (a sequence of subareas)
Γ(R) The travel time of a DSV along a route
cv The cost for each DSV in a sensing cycle
Ur The recruited user set Ur ≜ {u1, u2, . . . unu}
cu The cost for a recruited user in a sensing cycle
eu The sensing error of a user, which follows the

normal distribution, i.e., eu ∼ N(0, σ2
u)

Bu The total cost budget for a MCS task within a
sensing cycle

error() function The specific metric for calculating the overall
sensing error and in this paper it is relative error:

error(G, F̂ ) =

√∑T
t=1

∑N
s=1 (gs,t−f̂s,t)

2√∑T
t=1

∑N
s=1 (gs,t)

2

the campaign initiator offers the system a budget Bu to cover
the cost of participants.

The system employs nv DSVs to exclusively collect data
from any subareas of interest, and the set of the employed
DSVs is denoted as V ≜ {v1, v2, . . . vnv

}. These DSVs can
travel among the subareas at an average speed υ and collect
data from the subareas along their route. In a sensing cycle, the
route R of a DSV can be expressed as a sequence of subareas
that are reached by the DSV, i.e., R = {s1, s2, . . . snR

}, and
the travel time Γ(R) along a route should be constrained
within the duration td of the sensing cycle, calculated as:

Γ(R) =
∑nR

k=2
d(sk−1, sk)/υ, sk−1, sk ∈ R (1)

where d(sk−1, sk) denotes the distance between subarea sk−1

and sk. In each cycle, a DSV performs sensing tasks starting
from the subarea where it was at the end of the last cycle. Since
DSVs are employed by the system for a long period, their
remuneration can be paid daily, weekly, or longer. However,
to facilitate the budget management in each sensing cycle,
the remuneration of DSVs is evenly shared in each cycle,
that is, the system should expend a cost cv for each DSV
in each cycle. Besides, the sensing error of DSVs is assumed
as negligible, which benefits from its high-accuracy sensors.

It is worth to mention that some users can be recruited
to perform the sensing task in their located subarea and the
proportion of the subarea covered by users in all subareas is
denoted as user coverage pu due to the biased distribution. In
a sensing cycle, the Sparse MCS system will recruit nu users,
denoted as Ur ≜ {u1, u2, . . . unu}, and expend a cost cu for
each recruited user. The sensing error eu of users is formulated
as a random variable that follows the normal distribution, i.e.,
eu ∼ N(0, σ2

u).

B. Active subarea selection strategy and data inference

When selecting subareas to sense, two major problems
should be solved: (1) how many subareas to select and (2)

where to sense to achieve better inference of missing data.
Inspired by this work [18], a novel subarea selection strategy is
proposed to explore the inherent correlations between sampled
subareas and missing data in terms of data inference directly.
Then, we give the solutions for the two problems.

Sensing Matrix 'F

T

N

Inferred Matrix F̂

k

k1,1a

TB

 =

1,2a

Factor Matrices A and B

assumed k = 2

2,1a 2,2a

3,1a 3,2a

4,1a 4,2a

5,1a 5,2a

2,3f 

1,1b

1,2b

2,1b

2,2b

3,1b

3,2b

4,1b

4,2b

5,1b

5,2b

4,5f̂2,3 2,1 31 2,2 32f a b a b  +

4,5 4,1 51 4,2 52f̂ a b a b= +

A

Matrix factorization Data Inference

2

,

( , ) arg min ( ' )T

F
A B

A B F A B M= −  • ˆ= TF A B

SampledMissing Inferred



Fig. 1. Data inference based on matrix factorization.

The data inference based on matrix factorization is shown in
Fig. 1. Specifically, a binary sampling matrix M is employed
to mark whether a subarea is sampled or not. If the subarea
si is sampled in the sensing cycle ti, the element mi,j = 1,
otherwise mi,j = 0. Correspondingly, a sensing matrix F ′ is
used to record the sampled data, where the element f ′

i,j = 0
when the data in the subarea si in the sensing cycle ti is
missing. The sensing matrix F ′

N×T generally has the low-rank
feature, thus it can be factorized into factor matrices AN×k

and BT×k, where k is the rank of the sensing matrix. Using
the Singular Value Decomposition [48] (SVD) or the Alternate
Least Square (ALS) method [49], the factor matrices can be
obtained by minimizing the loss as:

(A,B) = argmin
A,B

∥∥(F ′ −A×BT ) •M
∥∥2
F

(2)

where the ∥∥F is the Frobenius norm. As the factor matrices
A and B obtained, the inferred matrix F̂ can be estimated
as F̂ = A × BT , and each missing data f̂i,j can be inferred
as f̂i,j = aib

T
j , where the ai = [ai,1 ai,2 . . . ai,k] is the

i-th row of matrix A and bj = [bj,1 bj,2 . . . bj,k] is the j-
the row of matrix B. Meanwhile, each sampled data f ′

i,j also
corresponds to an approximated equation as f ′

i,j ≈ aib
T
j =∑k

r=1 airbjr, where air, bjr are the r-th element of the i-th
row and the j-th row of factor matrices A and B. We take
k=2 as an example, a sample f ′

i,j can be expressed as f ′
i,j ≈∑2

r=1 airbjr = ai1bj1 + ai2bj2.
In a new sensing cycle tn+1, the factor matrix B will have

a new row, that is, BT
k×(n+1) =

[
BT

k×n bTn+1

]
. Then, we

can obtain the following theorem.
Theorem 1. To determine the new row bTn+1 in B, at least k

subareas should be sampled in the sensing cycle tn+1, where
k is the rank of the sensing matrix.

Proof. Without loss of generality, we simplify the relation-
ship between the sampled data f ′

i,n+1 and the dot product
aib

T
n+1 as linear, i.e., f ′

i,n+1 = aib
T
n+1. Suppose we sampled

ns subareas in sensing cycle tn+1, each sampled data corre-
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sponds to an equation and we can build the following linear
system with ns equations:

f ′
1,n+1 = a1b

T
n+1

f ′
2,n+1 = a2b

T
n+1

· · ·
f ′

ns,n+1 = ans
bTn+1

(3)

The linear system can be further transferred into matrix form,
shown as follow:


f ′

1,n+1

f ′
2,n+1

· · ·
f ′

ns,n+1

 =


a1,1 a1,2 . . . a1,k
a2,1 a2,2 . . . a2,k

...
...

. . .
...

ans,1 ans,2 . . . ans,k



bn+1,1

bn+1,2

· · ·
bn+1,k


(4)

F ′
n+1 = CbTn+1 (5)

In the system, the matrix F ′
n+1 consists of sampled data

that are known and the coefficient matrix C is composed of
several row vectors of A, which is also known. Therefore, to
determine the unknown vector bTn+1 with k unknown elements,
the coefficient matrix C should satisfy rank(C) = k. It means
that the system requires at least k sampled data to build
k equations. Here we also use an example of rank k=2 to
illustrate the above equations. Given the sensing matrix F ′

(k=2) and its two samples (1,n+1), and (2, n+1) at subarea 1
and 2 in time cycle tn+1, we can build a linear system with
the following equation:[

f ′
1,n+1

f ′
2,n+1

]
=

[
a11 a12
a21 a22

] [
bn+1,1

bn+1,2

]
(6)

If
[

f ′
1,n+1

f ′
2,n+1

]
and

[
a11 a12
a21 a22

]
are known, it can be

solved by using two equations since
[

bn+1,1

bn+1,2

]
only has

two unknown variables. With the history samples, we can
alternatively train the unknown variables in factor matrices
A and B using samples taken in the new time cycle until their
values converge to stable ones. □

From the above analysis, we can find that selecting different
subareas to sample will bring different coefficient matrices C,
which is key to solving the new row in B. Therefore, we decide
which subareas to select by analyzing the corresponding C. In
the linear system, if the row vector c in C is linearly dependent
of other row vectors, the c is redundant for the linear system.
Thus, the subarea corresponding to c is supposed to be unable
to bring new information. Based on this analysis, we give the
following definition of informative subareas.

Definition 1 (Informative subarea): Given a set of subar-
eas and the corresponding coefficient matrix, the subarea is
informative if its corresponding row vector in the coefficient
matrix is linearly independent of all row vectors corresponding
to other subareas.

Moreover, the potential sensing error, such as the sensing
error of mobile users in our problem, may lead to the in-
stability of the linear system and affect the accuracy of data

inference adversely. From the geometric view of the linear
system, when the cosine values between the row vectors
of the coefficient matrix are small, the linear system is
more robust to the data with error. Therefore, we give the
following definition of robust subareas.

Definition 2 (Robust subarea): Given a set of subareas and
the corresponding coefficient matrix, the subarea is robust
if the maximum cosine value between its corresponding row
vector in the coefficient matrix and row vectors corresponding
to other subareas is smaller than a certain threshold.

Based on the above analysis and definitions, the active
subarea selection strategy is described as: the informative and
robust subareas are preferentially selected and the total
number of sampled subareas should exceed k (i.e., the rank
of the sensing matrix). In fact, since the linear relationship
between the sensing data and factor matrix is generally not
complete, the number of sampled subareas is usually more
than k. Then, the new row in B is solved by using the
Ridge Regression (RR) method [50] and we utilize the
ALS method to update the factor matrix A and B. Finally,
the inferred matrix F̂ = A×BT can be obtained. For more
details about subarea selection and data inference, interested
readers can be referred to [18].

C. Problem formulation

Based on the system model and data inference model, we
define our hybrid sensing problem for Sparse MCS as follows.

Problem: Given a MCS task with N subareas and T sensing
cycles, we need to plan the route for each DSV and select
mobile users at proper subareas to collect data cooperatively
in each sensing cycle, then infer the missing data based on
the current and historical sensing data. The objective is to
minimize the inference errors while satisfying the budget and
time constraints.

minimize error(G, F̂ ) (7)

subject to (cvnv + cunu) ⩽ Bu (8)

Γ(Rt,vi) ⩽ td, t ∈ T, vi ∈ V (9)

where error(G, F̂ ) =

√∑T
t=1

∑N
s=1 (gs,t − f̂s,t)

2√∑T
t=1

∑N
s=1 (gs,t)

2
(10)

The problem is formulated as Eq. (7-10). Relative error
error(G, F̂ ) between the inferred matrix F̂ and the ground
truth matrix G is used as the inference error (Eq. 10). The
budget constraint in Eq. 8 limits the amount of employed
DSVs and recruited users, and the time constraint in Eq. 9
limits the travel range of the DSVs within a sensing cycle.

D. Illustrative case

An illustrative case is shown in Fig. 2 to provide more
details of our problem in a sensing cycle. A typical sensing
scenario begins with a sensing task published by an orga-
nizer for obtaining fine-grained traffic information, e.g., traffic
speeds in different road segments over a large-scale target area
during a long time. Suppose the monitored area is split into
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25 subareas, and two DSVs as well as five mobile users are
distributed in different subareas. The budget in this sensing
cycle is Bu=12 while the costs of DSVs and users are cv = 5
and cu = 1, respectively. The task assignment for DSVs and
mobile users is completed before the start of this sensing
cycle. We first search optional routes for each DSV under
the time constraint, denoted as R1

v1 , R2
v1

, R1
v2 , R2

v2 . The route
R2

v1
covers three subareas, which is more than that covered

by R1
v1 . Therefore, we would like to select R2

v1 for DSV-
1 since it may be more conducive to inferring missing data
than R1

v1 . Besides, R2
v2 may not be a good choice for DSV-2

because it has an overlap with both R1
v1 and R2

v1 , thus, R1
v2

is selected. After route planning for DSVs, appropriate users
are selected to collect data with the rest budget Burest = 2.
User u6 and u8 are not selected because the subareas their
resided are not informative or robust. The u14 is also excluded
since the subarea s14 is covered by DSV-2. Finally, we recruit
u4 and u21 to execute the sensing task. When all the sensed
data is submitted, the values of traffic speeds in the unsensed
subareas are deduced by matrix completion algorithms. With
the collected traffic information, the governor or the service
initiator could adopt measures or impose influence on the ur-
ban context, for instance, encouraging citizens and intelligent
vehicles to assist package delivery or suggesting intelligent
vehicles to take other routes when meeting traffic congestion.

The above case is only an intuitive interpretation of our
problem while more complicated factors should be considered
in the DSVs route planning and user selection process.
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Fig. 2. An illustrative case of our problem.

IV. A CROWD-AIDED VEHICULAR HYBRID SENSING
FRAMEWORK

A. Framework design

DSVs route planning and user selection are two mutually
influential tasks that share a total budget. More expenses are
spent on DSVs, so that fewer users can be recruited. Therefore,
the budget allocation is important, which are determined via
experiments in this paper. Moreover, although the tasks are as-
signed to different sensing resources, the sensing data collected
by these resources have inherent relationships. Therefore, it
is important to determine the cooperative form of the two
sensing resources. For DSVs route planning, we not only need
to plan the route for each DSV under the time constraint,
but also should consider the cooperation between multiple

DSVs with the aim to contribute maximum information, such
as avoiding the overlap between routes of different DSVs.
For user selection, it is executed under the budget constraint.
For one thing, we want mobile users to collect data that is
complementary to the sensing data of DSVs. For another thing,
we should select users located in the appropriate (informative
and robust) subareas to reduce the negative impact of sensing
error. The essence of task assignment is to select appropriate
subareas for DSVs and users to sample. Based on the active
subarea selection strategy described in section III B, we
would like to select more informative and robust subareas. In
addition, the historical sampled times of a subarea also have
an impact on data inference [25]. Therefore, this factor is also
considered in this work.

To effectively assign tasks for various sensing resources,
this work proposes a crowd-aided vehicular hybrid sensing
framework, namely DRPUS, which mainly contains two parts:
DSVs route planning and user selection. The framework
currently works offline for each sensing cycle for the sake
of simplicity and practicality, in which all sensing tasks for
both kinds of sensing resources are scheduled and assigned
before a sensing cycle starts. In the DSVs route planning,
a three-step strategy is devised, consisting of optional route
searching, fused route selection, and final route determination.
Then, the user selection is conducted to select appropriate
mobile users under the rest budget constraint based on the
result of DSVs route planning. The system architecture of
the proposed framework is shown as Fig. 3. As we can see,
the sensing tasks are motivated by practical demands, i.e.,
monitoring what is happening in a city, for instance, traffic
situations. Our framework leverages the power of crowds,
e.g., DSVs and mobile users, to collect useful information
at a low-cost manner and to help understand how the traffic
system is evolving. Based on that, a governor could further
take actions to optimize different smart systems, e.g., smart
parking and intelligent transit. In this paper, we design such
a fixed task assignment order and perform the DSVs route
planning before user selection based on the following reasons:
(i) Subarea selection benefits from this way. With the support
of powerful maneuverability, the DSVs are able to collect data
in any subareas of interest and even collect at night. (ii) Miss
data inference benefits from this way. In terms of sensing error,
dedicated sensors with greater sizes and higher accuracy can
be equipped on DSVs to collect more accurate sensing data.
(iii) Privacy protection benefits from this way. Mobile users
often risk their location and identification privacy when re-
porting data with actual positions. Therefore, recruiting mobile
users first may face the privacy leakage problem or a shortage
of participants. While our approach requires recruiting only a
small number of willing users after the decision of the DSVs’
routes. Based on our work, interested readers can consider
designing more realistic and generic frameworks, for instance,
a hybrid mode where DSVs are offline but mobile users are
online recruited; or a framework that adapts to the number of
DSVs and mobile users in different time periods.
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B. DSVs route planning

To support the offline route planning, we have the following
assumption about the travel time.

Assumption 1. The travel time between each pair of
subareas can be estimated in advance.

The travel time between two subareas is related to the
speed of a DSV and the distance between the subareas. In a
sensing campaign, the distance between the subareas is usually
constant, and the average speed of a DSV can also be obtained
from the daily data. Therefore, the travel time between each
pair of subareas can be estimated in advance. Considering that
travel time may fluctuate due to real-time traffic conditions in
the task execution stage, sufficient redundancy of travel time
should be left to allow a DSV to move on time.

In the DSVs route planning, we mainly face two challenges.
Firstly, a DSV may have numerous optional routes in a sensing
cycle, even under the time constraint. If all optional routes are
recorded, it will consume a lot of storage resources and more
importantly complicate the route planning. Besides, in our
system, there may be multiple DSVs. To take full advantage
of multiple DSVs, we need to not only carefully select the
appropriate route for each DSV, but also properly handle the
relationship between the routes of multiple DSVs.

Therefore, we propose a three-step heuristic strategy to
determine the route of each DSV, as shown in Fig. 4. The
optional route searching is firstly performed for each DSV.
In general, the more sampled subareas will bring more in-
formation. Therefore, we only record the optional routes that
cover a considerable number of subareas. Then, the fused route
selection is conducted based on the LBS method [20], in which

the optional routes of multiple DSVs are cross-fused and only
the best Nk fused routes are retained in each fused step. After
that, a fused route is selected based on the weighted random
selection. Finally, the route of each DSV is determined based
on the selected fused route.
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Fig. 4. Three-step DSVs route planning strategy.

a) optional route searching: Based on Breadth-First
Search Method (BFS), we propose an optional route searching
algorithm to find all optional routes meeting our requirement,
as shown in Algorithm 1. Given the travel time matrix Φ, the
initial subarea sb of the DSV, and the threshold nth, we use the
open route list (RL open) and the close route list (RL close) to
record the incomplete routes and complete routes, respectively.
The definition of the incomplete route and the complete route
is given as follows:

Fig. 3. System architecture of the crowd-aided vehicular hybrid sensing framework for urban actuation.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2022.3216318

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on October 24,2022 at 03:39:39 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, OCTOBER 2022 8

Algorithm 1 Optional route searching based on BFS
Input: Φ, sb, td, nth

1: add the route R = {sb} into RL open
2: for R in RL open do
3: Snext = {s|Γ(R) + Φ(sl, s) ⩽ td, s ∈ S}
4: if Snext = ∅ then
5: if N(R) > nth and R /∈ RL close then
6: add the route R into RL close
7: else
8: for snext in Snext do
9: Rnew = add(R, snext)

10: if Rnew /∈ RL open then
11: add the route Rnew into RL open

return RL close

Definition 3 (Incomplete route and complete route): Given a
route R = {sb, s2 . . . sl}, the successor subareas set Snext =
{s|Γ(R) + Φ(sl, s) ⩽ td, s ∈ S}. If Snext ̸= ∅, the route R
is incomplete and we can add new subareas into the route,
otherwise, the route is complete.

All routes in RL open are handled successively. If the
Snext ̸= ∅, each subarea snext in Snext is added into the
incomplete route respectively to form the new route Rnew,
then the Rnew will be added into RL open. If the Snext = ∅
and the route coveres more than nth subareas, the route will
be added into RL close. The above process will be performed
iteratively until RL open is empty, then all routes in RL close
are the optional routes for the next route fusion process.

Before adding the route into RL open or RL close, it is
necessary to determine whether the same route has already
existed in the list. We do not distinguish the order in which
each subarea is sampled in an optional route, except for the
first and last subarea of the route. For example, the route R1 =
{s3, s4, s5, s6} and R2 = {s3, s5, s4, s6} are considered as
the same route, while the R1 and R3 = {s3, s4, s6, s5} are
different because the last subarea in the route will affect the
route planning in the next sensing cycle.

b) Fused route selection: The fused route selecting algo-
rithm based on LBS is shown in Algorithm 2. The basic idea
of our algorithm is to fuse the routes of each DSV in turn
while only the best Nk fused routes are retained in the fused
route list (FRL) in each step. According to the active subarea
selection strategy, we use the number of informative subareas
Ninfo(R) covered by a route as the indicator, and a route with
more informative subareas will be retained preferentially. If
two routes have the same Ninfo, we count the total historical
sampled times of the subareas covered by the two routes,
respectively, and retain the route with fewer sampled times.

The best Nk optional fused routes can be obtained after
optional routes of all DSVs are fused and we need to select
one route R*

f from them. A plain idea is to select the fused
route with maximum Ninfo. However, there may be several
routes that always contain more informative subareas than
other routes, so they will always be selected as the plain
idea suggesting. Then, DSVs can only collect data from the
subareas covered by those routes alternately, which leads
to the absence of data in many other subareas. To avoid

Algorithm 2 Fused route selecting based on LBS
Input: OR, Nk, A
1: // search the fused route list
2: add Rf = ∅ into FRL
3: for ORv in OR do
4: for Rv in ORv do
5: for Rf in FRL do
6: Rf new = Rf ∩Rv

7: if Ninfo(Rf new) > min Ninfo(FRL)
8: and Rf new not in FRL then
9: add Rf new into FRL

10: Rmin
f = argmin Ninfo(FRL)

11: delete Rmin
f from FRL

12: // select with the random weighted method
13: for Rf in FRL do
14: weight(Rf ) = Ninfo(Rf )

/∑
Rf∈FRL Ninfo(Rf )

15: R*
f = Random(FRL,weight)

return R*
f

this situation, the weighted random selection is adopted. The
weight of each optional fused route Rf is calculated as
weight(Rf ) = Ninfo(Rf )

/∑
Rf∈FRL Ninfo(Rf ), and we

randomly select the fused route R*
f based on the weight.

c) final route determination: After the fused route is
determined, the fused route needs to be split into the cor-
responding route for each DSV, so that the sensing task
of each DSV can be truly determined. In the route fusion
process, we record the index between the fused route and the
corresponding routes of each DSV, thus, the route of each
DSV can be determined by the index quickly.

C. Active user selection

The user selection is implemented after the determination
of DSVs’ routes, thus, we want to select the users to sample
the subareas that are informative with regard to the subareas
covered by DSVs, as the active subareas selection strategy sug-
gests. Besides, the sensing error of the user is non-negligible,
which may seriously impact the accuracy of data inference.
Therefore, to reduce the negative impact, we need to select
users in the robust subareas.

To solve the user selection problem, we propose the active
user selection algorithm, as shown in Algorithm 3. Firstly,
the number nu of users that we can recruit is determined
under the budget constraint. Given the total budget Bu and
the cost of employed DSVs cvnv , the rest budget is cal-
culated as Burest = Bu − cvnv and the number is nu =
ROUNDDOWN(Burest/cu). The optional user set is U ≜
{u1, u2, . . .} and the subareas covered by users are recorded
in the set Su =

{
s1u, s

2
u, . . .

}
. Some subareas in Su may have

already been covered by DSVs and they are excluded since we
do not want to sample these subareas repeatedly, thus, the rest
subareas only covered by users are recorded in S̄u = Su−R∗

f .
So far, we need to select nu subareas from S̄u and record
them in the set Suv . The historical sampling times of the
unsampled subareas in the current sensing cycle are sorted.
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Algorithm 3 Active user selection
Input: nu, Su, R*

f , A, M, U
1: S̄u = Su −R∗

f , Suv = R∗
f

2: while N(Ur) < nu and S̄u ̸= ∅ do
3: s̄∗u = argmin

s̄u∈S̄u

(Nsampled(s̄u))

4: if s̄∗u is informative and robust then
5: add s̄∗u into Suv

6: add us = locate in(s̄∗u) into Ur

7: delete s̄∗u from S̄u
return Ur

Those informative and robust subareas with few sampled times
would be added to Suv until the number N(Ur) = nu or
S̄u = ∅ is satisfied.

D. Algorithm analysis

In the DSVs route planning, the runtime is mainly spent
on optional route searching and fused route selection. Since
the optional route searching is based on Breadth-First Search
Method, the complexity of algorithm 1 can be formulated
as O(nv × TBFS) if the computation complexity of the
BFS method is TBFS . In terms of fused route selection, it
is based on a greedy search method, namely Local Beam
Search. The runtime of fused route selection is dependent
on the beam width Nk and the number of DSVs nv , and
its complexity can be formulated as O((nv − 1) × TLBS)
if the computation complexity of LBS method is TLBS . In
addition, to successfully complete the data inference process,
at least k samples should be collected in a sensing cycle. This
requirement ensures that the matrix rank reaches k. Different
subareas selected for sampling could impact the recovery
performance. Therefore, informative subarea, robust subarea,
and the number of historical sampled times are proposed as
the guidelines for subarea selection.

V. EXPERIMENTAL SETUP

A. Data sets

We use two real-world data sets, namely Flow and TaxiS-
peed, to evaluate our proposed framework and strategies. The
data sets contain different types of sensed data in represen-
tative IoT applications, like passenger flow index and traffic
speeds. The detailed statistics of the two data sets are given
in Table II.

TABLE II
STATISTICS OF TWO EVALUATION DATASETS

Flow Traffic
Project DataFountain competitions TaxiSpeed
City Beijing Beijing
Cycle length 1 hour 1 hour
Duration 7 days 4 days
Cell size 200m × 200m road segments
Number of cells 171 100
Mean ± Std. 8.84 ± 13.68 13.01 ± 6.97 m/s

• The Flow data set contains the flow index of people,
which were sensed from different regions in Beijing
during the outbreak of COVID-19. The target area was
divided into 997 subareas and the sensing campaign
lasted from 2020-01-17 to 2020-02-15 with one hour as
a sensing cycle. In this paper, we only adopt the sensing
data in 171 subareas for 7 days after the data screening.

• The TaxiSpeed data set contains more than 33,000 tra-
jectories of taxicabs in Beijing, and the average travel
speed of taxicabs on each road segment was derived from
trajectories. The sensing campaign lasted for four days
from 2013-09-12 to 2013-09-15 and the sensing cycle
is also one hour. According to [29], a road segment
is considered as the subarea and we selected 100 road
segments with valid data in this paper.

Strong spatial-temporal correlations in urban sensing data
are the prerequisite for data inference. This point was discov-
ered and verified in our previous work [15]. The two data sets
serve as the ground truth matrix G with N subareas and T
sensing cycles. Before a sensing cycle starts, our framework
would select appropriate subareas and assign the tasks to DSVs
and mobile users, for instance, collecting flow information in
different subareas. Within a sensing cycle, DSVs and mobile
users will collect information in their assigned subareas. After
the sensed data are submitted in each time cycle, the sensing
matrix F ′ is acquired. By leveraging matrix completion algo-
rithms, the inferred matrix F̂ is obtained. That is to say, the
information in unsensed subareas is estimated with acceptable
inference errors. With the information of F̂ , a governor can
take action to optimize different smart systems. For instance,
when the collected information in a subarea about passenger
flow index exceeds the predefined threshold, the local governor
will suggest citizens in other regions to not travel to this region
and take strict isolation measures in this region during the
COVID-19 outbreak.

In our approach, the rank k of the matrix is a key parameter.
Thus, we implement the matrix factorization with a series of
ranks to the ground truth matrix G and obtain the inferred
matrix F̂ , then the rank is determined by analyzing the series
of error(G, F̂ ), as shown in Fig. 5. The series of error shown
in the figure reveals the low-rank feature of the matrix G:
small rank (relative to the dimension of data matrix) leads to
small error and the error has a manifest drop with the increase
of rank. When the rank(Flow) > 22 and rank(TaxiSpeed)
> 26, the error is less than 0.05 and the decline rate of
error gradually slows down with the increase of rank. Since
selecting more subareas to sense would incur more costs and
the error less than 0.05 reflects a satisfying result, we adopt
rank(Flow) = 22 and rank(TaxiSpeed) = 26 for the two data
sets, respectively.

B. Configurations

We conduct extensive Monte Carlo experiments to investi-
gate the performance of our proposed hybrid sensing frame-
work. To eliminate the factors of several initial conditions on
the results, such as different initial positions of DSVs and dif-
ferent distribution of users, 50 groups of initial configurations
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are randomly generated, including the DSVs’ initial positions
and users’ distribution, under each key parameters combination
(DSVs number and user coverage). Then, the experiments of
different algorithms with the same key parameters employ
the same 50 groups of initial configurations. We use 1) the
inference error to evaluate the overall performance, and use
2) the optimal DSVs cost rate (ODCR) to denote the optimal
budget allocation. The inference error can be calculated using
Eq. (10), while the ODCR is defined as follows: Given a total
budget Bu and cost of each DSV cv , the error is minimum
when the number of employed DSVs is n∗

v , then ODCR =
cvn

∗
v/Bu.

VI. RESULTS AND DISCUSSION

We first investigate the effectiveness of the hybrid sensing
framework by performing extensive experiments with different
numbers of DSVs under different cv and Bu. Then, we com-
pare our approach with five baselines to verify the effective-
ness of the novel strategies (subarea selection, route planning,
and user selection) proposed in our framework. Finally, the
factors such as fusion order of DSVs, user coverage, and
sensing error of users are discussed to better understand the
robustness of our framework.

A. Effectiveness of our hybrid sensing framework

In our proposed framework, both DSVs and mobile users
are employed to complete sensing tasks, while only users
or DSVs are employed in the all-user pattern and all-DSV
pattern, respectively. The cost of recruiting a mobile user in
each sensing cycle is set as cu = 1 (unit). Considering the cost
of energy, labor, and communication, the cost of a DSV cv is
determined as 4-6 times that of a user per cycle, that is cv = 4,
cv = 5, or cv = 6. According to the active subarea selection
strategy, the budget should be satisfied to sample at least k
subareas. For example, as the rank(Flow) = 22, the budget
used on the Flow must satisfy Bu(Flow) ≥ 22. Moreover, the
budget is set as multiples of the cost of DSV cv , so that we
can compare the hybrid pattern with the all-user and all-DSV
patterns under the same budget. For instance, in experiments
on the Flow dataset, when the cv = 4, the budget is set as
24, 28, and 32. The results of six groups of experiments are
exhibited in Fig. 6.

In all groups of experiments, the same trend is witnessed:
the error at first decreases with the increment of the number
of DSVs, which benefits from the suitable budget allocation
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Fig. 6. The performance of different numbers of DSVs with different Bu

and cv .

and the high sensing accuracy of DSVs. However, as the nv

further increases, the error will arise. When all budget is used
to employ DSVs (all-DSV pattern), there is a noticeable surge
in error, especially on the TaxiSpeed dataset. This is because
there are some informative subareas that DSV cannot reach in
a sensing cycle (due to the time constraint in a time cycle), so
some users are required to sample those subareas. However,
the remaining budget for recruiting mobile users cannot afford
the essential informative subareas, especially when all budgets
are assigned to DSVs. In other words, several informative
subareas cannot be sampled in this situation. Besides, under
the same cv and nv , the enlargement of the budget will cause a
decrease in error, which stands to reason. More budget enables
the system to recruit more participants and collect more data.

With a larger vehicle cost cv , the inference error will
increase more sharply when employing more DSVs. For
example, on the Flow, the error only increases by about 19%
when nv = 6, compared with the minimum error in this group
(cv = 4, Bu = 24). However, on the Flow, the error increases
by about 63% when nv = 4, compared with the minimum
error in this group (cv = 6, Bu = 24). It is because when cv
is large, the total number of participants would decrease, and
further less informative and robust subareas can be sampled.
It reveals that a reasonable budget allocation is essential to
achieve optimal inference results.

On the Flow, the average ODCR of all experiments is 0.6234
while the average ODCR is 0.8530 on the TaxiSpeed. These
two values represent the optimal budget allocation on the two
datasets respectively, providing the reference values for the
actual sensing campaign on the two datasets.
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B. Effectiveness of the strategies in our framework

Here we evaluate the effectiveness of the novel strategies
in our framework, including subarea selection (Section III.B),
route planning (Section IV.B), and user selection (Section
IV.C). Specifically, we compare our strategy with five baselines
as following:

• Random, which randomly selects a route from the op-
tional routes set for each DSV and selects users to collect
data.

• Uncertainty, which preferentially selects the subarea
with greater uncertainty that is calculated based on the
Query by Committee (QBC) [26] method. We use the
data in the last sensing cycle as the pre-recovered data
since the data in the upcoming sensing cycle is absent.

• BLA-ST, which only preferentially selects the subarea
with few historical sampled times in route planning and
user selection and tends to balance the historical sampled
times of all subareas.

• MAX-NS, which only preferentially selects the route with
more subareas in the fused route selection process and
tends to maximize the number of subareas covered by
DSVs.

• MAX-Info, which only preferentially selects the route
with more informative subareas in the fused route se-
lection process and tends to maximize the number of
informative subareas covered by DSVs.

Since the results with different parameter configurations
have similar trends, we present the results in Appendix (Table
III and IV). Here we only show the results of one of the
parameter configurations for the subsequent experiments. The
cost of each DSV is selected as cv = 5, and the budgets for the
two data sets are determined at Bu(Flow) = 30, Bu(TaxiSpeed)
= 35, respectively. According to results in Fig. 6, the number
of employed DSVs are set as nv = 4 and nv = 6 for the two
data sets. The experiments for our strategy and five baselines
are conducted under the same parameter configurations, and
the results are drawn in Fig. 7. In addition to the error, we
also count the average number of sampled subareas (NSS) for
each group of experiments.
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Fig. 7. The performance of different algorithms.

As shown in the figure, our strategy acquires the minimum
error among five baselines on the two datasets, which vali-
dates the advantages of our framework. The BAL-ST has the
highest error among our strategy and its three variants (BAL-
ST, MAX-NS, MAX-Info), especially on the Flow dataset.
Besides, the BAL-ST typically has fewer NSS than our strategy

and the other two variants. The MAX-NS enables DSVs to
sample more subareas, which has the highest NSS on the
two datasets, but the error of MAX-NS is higher than that of
our strategy. The MAX-Info abandons the weighted random
selection process in the fused route selection, which leads
to worse performance. This verifies the effectiveness of the
weighted random selection process in obtaining high-quality
inference results. The Uncertainty and Random usually have
lower NSS than other algorithms, and the Random has the
worst performance among all algorithms. Uncertainty has a
smaller error than MAX-NS and MAX-Info on the Flow, but
it is inferior to our strategy and its three variants on the
TaxiSpeed.

C. Fusion order of DSVs, sensing error and coverage of users

To test the robustness of the proposed hybrid framework,
we first examine if the fusion order of DSVs would affect the
final results. The cost of each DSV is selected as cv = 5, and
the budgets for the two data sets are determined at Bu(Flow) =
30, Bu(TaxiSpeed) = 35, respectively. As we can see in Fig. 8,
three different fusion orders are compared, and they are fusing
preferentially if the number of optional routes is small (min-
p), fusing preferentially if the number of optional routes is
large (max-p), and fusing randomly (random). It is concluded
that different fusion orders of DSVs have little impact on the
results. In general, the average result of min-p is the best, and
its performance is relatively stable, so we adopt this strategy
in this work. The min-p strategy is less likely to delete a large
number of fused routes in the initial stage and finally, it can
always cover more subareas (larger NSS).

(a) On Flow (b) On TaxiSpeed

Fig. 8. The performance of our framework with different fusion orders of
DSVs.

We then investigate the performance of our framework
with a different standard deviation of sensing error (σu) and
coverage (pu) of mobile users. As shown in Fig. 9, the
inference error generally decreases with the increase of pu
and the decrease of σu. Greater user coverage pu indicates
that informative subareas can be covered by users with a higher
probability. Therefore, when some informative subareas cannot
be reached by DSVs in a sensing cycle, users can be recruited
for sampling, so the error is reduced. On the two data sets, the
error falls gently along with the change of σu. However, on the
Flow, the error has a rapid drop with the increase of pu while
the decreasing trend of error is slow along with the change of
pu on the TaxiSpeed. This is because the Flow contains more
subareas than the TaxiSpeed and the informative subareas that
DSVs cannot reach in a sensing cycle will be more on the
Flow, thus the sensing campaign on the Flow relies more on
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users to collect data from different informative subareas that
cannot be reached by DSVs. It also explains why the ODCR
on the Flow is smaller than that on TaxiSpeed. Therefore,
the error drops sharply on the Flow when the user coverage
increases.

(a) error-Flow (b) error-TaxiSpeed

Fig. 9. The performance of our framework with different σu and pu.

D. Discussion

In this section, we conclude the research findings and
discuss some drawbacks of this work.

By blending DSVs and mobile users in the MCS campaigns,
the hybrid sensing framework successfully achieves lower
inference error compared to the all-user and the all-DSV
pattern. It indicates that the framework realizes a good balance
of sensing costs and sensing error for different sensing re-
sources and overcomes the problems incurred by only a single
sensing resource. Moreover, by comparing with five baselines,
our proposed strategies achieve superior performance on the
number of sampled subareas and the inference errors. It reveals
that more informative and robust subareas are selected by our
strategies. Notably, our framework is robust to address the
different fusion orders of DSVs, the uncertainty of sensing
error as well as the coverage of mobile users. It indicates that
the framework can complete the real-world Sparse MCS tasks.

However, there remain some drawbacks in the present work.
The main lies in the hybrid pattern. We use an offline way,
which assigns the tasks to DSVs and the mobile users in a
defined order. This approach fails to fully exploit the poten-
tial of a hybrid sensing pattern in further reducing sensing
costs and inference errors. The current DSVs route planning
algorithm is based on an improved version of the greedy
algorithm, which keeps the current best k candidates for sub-
selection. The division of the spatiotemporal sensing map
heavily affects the efficiency of our algorithm. In terms of
task assignment, the current approach is an offline mode, in
which DSVs and mobile users are arranged before a new
cycle starts. However, considering a more practical scenario,
mobile users can participate in or quit the sensing tasks at
any time. Thus, an offline-online hybrid mode for different
sensing resources (offline for DSVs, and online for mobile
users) is more suitable. Moreover, our framework does not
take into account changes in the number of available DSVs
and mobile users over time. A dynamic mechanism would
better be designed to adjust the recruitment of different sensing
resources during different time cycles.

VII. CONCLUSION

Based on the development of social transportation and social
sensing, a crowd-aided vehicular hybrid sensing framework
is proposed, namely DRPUS. To the best of our knowledge,
the framework is the first attempt to blend numerous devices
and individuals in a unified target, which assigns sensing
tasks to DSVs and mobile users effectively and achieves
improved inference results by conquering three challenges.
Firstly, we determine the order of task assignment based on
the characteristics of DSVs and mobile users (mobility, sensing
accuracy, etc.). Also, we define the informative subarea and
robust subarea based on the analysis of data inference for
subarea selection. Moreover, we devise a three-step strategy
to determine the route for each DSV, including optimal route
searching, fused route selection, and final route determination.
Under the rest budget constraint, we propose an active user
selection strategy to recruit appropriate users to complement
the data. The effectiveness of our framework is validated by
extensive experiments on two real-world datasets by com-
paring it with the user-only/DSV-only framework, and five
baselines. Research findings reveal that our hybrid sensing
framework enhances the data collection at a low-cost manner
for ITS.

In the future, we would like to improve our hybrid sensing
framework from the following aspects. Firstly, a more uni-
versal hybrid sensing framework should be devised, in which
no fixed order of task assignment for DSVs and mobile users
is required. Secondly, in the decision on DSVs routes, we
would like to try evolutionary algorithms to provide better
solutions. Lastly, we will consider more practical factors in
the framework, such as the diversity of DSV’s cost and user
mobility prediction.

VIII. APPENDIX

Two tables in Section VI of Results are listed here.

TABLE III
THE RESULTS OF OUR STRATEGY AND FIVE BASELINES ON FLOW

Flow
Indicators nv = 0 nv = 1 nv = 2 nv = 3 nv = 4 nv = 5 nv = 6

Our strategy error 0.294 0.226 0.209 0.203 0.202 0.218 0.254
NSS 30 30.842 31.462 31.991 32.476 33.277 33.867

BLA-ST error 0.372 0.291 0.284 0.273 0.272 0.284 0.355
NSS 30 30.736 31.036 31.380 31.308 30.696 29.474

MAX-NS
error 0.294 0.284 0.272 0.260 0.251 0.301 0.404
NSS 30 31.371 33.138 34.723 36.237 37.498 38.502

MAX-Info
error 0.293 0.268 0.251 0.237 0.225 0.233 0.285
NSS 30 30.703 31.413 32.097 32.857 33.560 34.099

Uncertainty
error 0.308 0.227 0.219 0.218 0.221 0.231 0.368
NSS 30 30.634 30.732 30.343 29.439 28.151 26.663

Random
error 0.354 0.321 0.309 0.311 0.322 0.349 0.451
NSS 30 31.060 31.080 30.225 28.626 26.937 24.475
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